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Abstract

■ People tend to avoid exerting cognitive effort, and findings
from recent behavioral studies suggest that effort allocation
is in part determined by the opportunity cost of slothful
responding—operationalized as the average reward rate per
unit time. When the average rate of reward is high, individuals
make more errors in cognitive control tasks, presumably owing
to a withdrawal of costly cognitive processing. An open ques-
tion remains whether the presumed modulations of cognitively
effortful control processes are observable at the neural level.
Here, we measured EEG while participants completed the
Simon task, a well-known response conflict task, while the
experienced average reward rate fluctuated across trials. We

examined neural activity associated with the opportunity cost
of time by applying generalized eigendecomposition, a
hypothesis-driven source separation technique, to identify a
midfrontal component associated with the average reward rate.
Fluctuations in average reward rate modulated not only com-
ponent amplitude but also, most importantly, component theta
power (4–8 Hz). Higher average reward rate was associated
with reduced theta power, suggesting that the opportunity of
time modulates effort allocation. These neural results provide
evidence for the idea that people strategically modulate the
amount of cognitive effort they exert based on the opportunity
cost of time. ■

INTRODUCTION

Owing to the limited capacity nature of human informa-
tion processing, we tend to expend cognitive effort only
when it is worthwhile. In the influential framework of
cost–benefit cognitive effort decision-making, people
allocate cognitive resources to a particular task when the
benefits of effort exertion—for example, reward incen-
tives tied to performance—outweigh their perceived
costs (Kool & Botvinick, 2018; Shenhav et al., 2017). On
this view, a growing body of work demonstrates that
individuals dynamically allocate their level of effort invest-
ment in accordance with shifting costs and benefits (Otto,
Braem, Silvetti, & Vassena, 2022; Otto & Vassena, 2021;
Sandra & Otto, 2018; Kool, Gershman, & Cushman,
2017; Botvinick & Braver, 2015; Westbrook & Braver,
2015).
One important source of costs is the opportunity cost of

time (Dora, van Hooff, Geurts, Kompier, & Bijleveld, 2022;
Kurzban, Duckworth, Kable, & Myers, 2013) which has
previously been formalized as the average reward rate
per unit time (Niv, Daw, Joel, & Dayan, 2007). On this
view, studies examining motor vigor—the costly outlay
of energy assumed to be required for fast responding in
free-operant tasks—find that individuals make faster
responses in a simple vigilance task when the average rate
of reward per unit time is high, suggesting that they

balanced the costs the harder work to emit faster actions
(“vigor”) against the rewards foregone by responding
slowly (Griffiths & Beierholm, 2017; Beierholm et al.,
2013; Guitart-Masip, Beierholm, Dolan, Duzel, & Dayan,
2011). More recently, extending this idea to the domain
of effortful cognitive tasks in a classic cognitive control task
(Simon, 1990), we found that the average rate of reward
per second time modulated the level of cognitive control
that individuals applied toward inhibiting inappropriate,
prepotent responses (Otto & Daw, 2019). During periods
where participants experienced a higher rate of reward
receipt per second, participants made more errors on dif-
ficult, incongruent trials, whereas participants made fewer
errors on these trials when the experienced average
reward rate was low. That is, when time was “expensive,”
individuals appeared to modulate (presumably effortful)
controlled cognitive processing, which resulted in more
errors on difficult, incongruent trials in the Simon task.
More recently, this effect was replicated in a structurally
similar Flanker task (Eriksen & Eriksen, 1974), which also
requires cognitive control to inhibit distracting informa-
tion (Devine et al., 2021).

In short, these behavioral studies suggest that moment-
to-moment varying average rate of reward influences indi-
vidual’s strategic allocation of cognitive resources, which
could be similar to the observed adjustments to cognitive
control in accordance with, for example, recently experi-
enced response conflict (Ridderinkhof, 2002) or cues sig-
naling upcoming conflict (Gratton, Coles, & Donchin,
1992). However, it remains unclear whether this

1University of Regina, 2Massachusetts Institute of Technology,
3McGill University, Montreal, Canada, 4University of Toronto
Scarborough, 5University of Toronto

© 2022 Massachusetts Institute of Technology Journal of Cognitive Neuroscience 34:11, pp. 2113–2126
https://doi.org/10.1162/jocn_a_01905

D
ow

nloaded from
 http://direct.m

it.edu/jocn/article-pdf/34/11/2113/2048458/jocn_a_01905.pdf by M
IT Libraries user on 04 O

ctober 2022

http://crossmark.crossref.org/dialog/?doi=10.1162/jocn_a_01905&domain=pdf&date_stamp=2022-10-1


behavioral signature of average reward rate-evoked effort
modulation (i.e., increased error rates on incongruent tri-
als) is also accompanied by well-characterized neural sig-
natures of cognitive control modulation—in particular,
midfrontal theta oscillations (4–8 Hz) measured using
EEG (Cooper et al., 2019; De Loof et al., 2019; Umemoto,
Inzlicht, & Holroyd, 2019; Lin et al., 2018; Cooper, Wong,
McKewen,Michie, & Karayanidis, 2017; Cavanagh& Frank,
2014). Revealing such a relationship would demonstrate
that shifts in the average reward rate prompts modulations
of (effortful) cognitive control. Supporting this idea, a
body of past work has observed increases in midfrontal
theta power in response to cued conflict (van Driel, Swart,
Egner, Ridderinkhof, & Cohen, 2015), recently experi-
enced conflict (Cohen & Cavanagh, 2011) in Simon-like
tasks, deciding between similarly valued options in a delay
discounting task (Lin et al., 2018), and strategic control
allocation during decision-making (Bogdanov, Renault,
LoParco, Weinberg, & Otto, 2022; Cavanagh, Figueroa,
Cohen, & Frank, 2012).

Accordingly, we recorded EEG from participants
while they performed a Simon response conflict task
(Forstmann, van den Wildenberg, & Ridderinkhof, 2008;
Simon, 1990). This design allowed us not only to replicate
existing behavioral findings (Devine et al., 2021; Otto &
Daw, 2019) while the environment average reward rate

fluctuated, but also to extend them by examining the
average reward rate, which modulates the neural pro-
cesses underlying cognitive control allocation. Following
previous work, wemanipulated the (experienced) average
reward rate of the environment and investigated whether
a high average reward rate brings about modulations in
midfrontal theta power—thought to reflect adjustments
to effortful cognitive control processes originating in the
ACC (Cavanagh & Frank, 2014; Cohen, 2014).
In this task (Figure 1A), participants are required to

respond to a green circle using a right-hand response
and to a blue circle with a left-hand response. Because
the stimulus can appear either on the left or right side
of the display, on most trials (“congruent” trials), partici-
pants can effectively use the location of the stimulus to
guide responses, but on incongruent trials, participants
must ignore the location of the stimulus to make a cor-
rect, color-based response. As most trials (75%) are con-
gruent, incongruent trials require overriding a prepotent,
stimulus-driven response established by congruent trials,
and as a result, responses are markedly slower and more
error-prone. To manipulate the average reward rate, we
induced random fluctuations in the reward available for
making a correct response (Figure 1B), which we used
to compute a time-varying “experienced” average rate
of reward per second (Figure 1C). As participants had

Figure 1. (A) Task flow in the
Simon task. Before the stimulus
is displayed, participants were
shown the potential reward for
making a correct response, after
which they responded to a
circle on the basis of its color,
ignoring its location. (B) We
induced random fluctuations in
trial-to-trial available rewards.
(C) An example of participant’s
experienced average reward
rate, in units of reward per
second, computed jointly from
the participant’s history of
rewards and RTs, yielded an
experienced, empirical average
reward.
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5 min per block to complete as many trials as they could,
the average reward rate effectively imposed an opportu-
nity cost for slow responding (Beierholm et al., 2013;
Guitart-Masip et al., 2011), which, as we have previously
observed, increases error rates on difficult, incongruent
trials (Devine et al., 2021; Otto & Daw, 2019). In other
words, because this task is self-paced (with a fixed amount
of time per block), a reward-maximizing strategy is to make
responses as quickly as possible to ensure as many trials are
completed as possible—and this is especially true when the
average rate of reward is high (vs. low).
If increases in the average reward rate prompt individ-

uals to reduce their outlay of cognitive control, as sug-
gested by our previous behavioral observations (e.g., Otto
& Daw, 2019), we should observe neural activity that
reflects preparatory adjustments to effortful control in
accordance with this average reward rate. Because neural
activity originating in the ACC and surrounding midfrontal
regions (i.e., 4–8 Hz oscillations) is thought to underlie
control-related processes (Cavanagh & Frank, 2014;
Cohen, 2014), we therefore predicted that higher average
reward should be associated with reduced midfrontal
theta power, reflecting trial-to-trial reductions in cognitive
control prompted by the average reward rate per second.
Because the modulatory effects of trial-to-trial fluctuations
in average reward rate on neural activity are likely to be
weak (especially relative to task-unrelated neural activity),
we leveraged generalized eigendecomposition (GED)
method (Cohen, 2017, 2022), a hypothesis-driven source
separation technique that can be used to increase signal-
to-noise ratio, reduce data dimensionality, and identify
task-relevant statistical neural sources. Accordingly, follow-
ing recent work that used GED to investigate themidfrontal
neural components underlying cognitive control processing
(Zuure, Hinkley, Tiesinga, Nagarajan, & Cohen, 2020;
Cohen, 2018), we used GED to investigate whether activity
in midfrontal components is also modulated by trial-to-trial
fluctuations in average reward rate.

METHODS

Participants

Twenty-six participants were recruited through McGill
University’s classified ads system and gave written consent
in accordance with the McGill Research Ethics Board.
Participants were compensated $20 CAD for the session,
with a performance bonus ranging from $1 to $5. We
excluded the data of one participant who missed over 40
response deadlines in the Simon task, yielding 25 partici-
pants for the behavioral analyses. We further excluded the
data of three participants for whom technical issues pre-
cluded the collection of usable EEG data, resulting a sam-
ple size of 22 participants in the EEG analyses. A sensitivity
analysis indicated that we could detect EEG-based effect
sizes of approximately r = .29 (d = 0.60) or greater, with
at least 80% statistical power.

Simon Task

Our version of the Simon task used blue and green circles
as stimuli (Figure 1A). The blue or green color was either
associated with a left- or right-hand response (the “Z” or
“/” buttons on the keyboard). Stimulus presentation
sequence, triggers, and response timing were controlled
by the Psychophysics Toolbox (Brainard, 1997). On each
trial, a green or blue circle was presented on the left or
right side of the screen (Figure 1A). In the version of the
Simon task used here, 75% of trials were congruent—that
is, the side on which the stimulus was presented matched
the correct response hand. On the remaining 25% of tri-
als, participants needed to use stimulus color and fully
ignore the stimulus side to respond correctly.

Following a short practice task phase to gain familiarity
with the task, participants then completed ten 5-min blocks
of the Simon task, completing asmany trials as they could in
blocks of 5 min, mirroring our previous Simon task study
(Otto & Daw, 2019; Experiment 2). During these blocks,
the rewards available on each trial were determined using
a Gaussian randomwalk with a standard deviation of 30 and
reflecting boundaries at 5 and 95 cents (Figure 1B). At the
outset of each trial, participants were presented visually
with a number representing the reward on offer on that
trial, ranging from 1 to 100 cents (Figure 1A), which lasted
from 750 to 1250 msec, after which the Simon stimulus was
displayed, and participants had 600 msec to make a
response. After the 500-msec ISI following the response,
reward obtained (e.g., “+9” for a correct response, or “0”
otherwise) was displayed for 1000 msec. After each self-
paced 5-min block, participants were given a short break,
and following the ten 5-min blocks, participants were then
paid a bonus proportional to their earnings in the task.

Behavioral Data Analysis

Following previous work, we calculated the average reward
in units of reward per second, using the following update
rule (Otto & Daw, 2019; Constantino & Daw, 2015):

�rtþ1 ¼ 1− αð Þτ�rt þ 1− 1− αð Þτð Þ r
τ

where r is the obtained reward on trial t, τ is the time
elapsed since the last update (which depends, critically,
on each trial’s RT and intertrial interval), and α is a learning
rate parameter. We fit a single learning rate to congruent
trial RTs of the entire sample of participants by running a
separate regression for each participant, finding the learn-
ing rate that minimizes the total error across the group.
Specifically, the participant-level RT regression included
the following terms:

RT ¼ �r þ Rþ prev–error þ ITI þ trial–numþ resp–side
þ sim–repþ prev–type

where RTs were log-transformed and z-scored RTs, �r is the
average reward rate, R is the reward available for that trial,
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prev_error and prev_type are binary variables specifying
whether an error response or incongruent stimulus
(respectively) occurred on the previous trial, trial_num is
a linear term representing trial number (to capture practice
effects), and resp_side represents whether a left- or right-
hand responsewasmade (to capture simple response bias).
Our estimation procedure yielded a best-fitting α of .0144.

To assess the influence of this inferred average reward
rate (Figure 1C) upon log-transformed Simon RTs at the
group level, we conductedmixed-effects regressions using
the lme4 package (Pinheiro & Bates, 2000) for R, using
the following formula:

RT ∼ 0þ congruent þ incongruent þ congruent :
ðprv–errorsþ run–numþ itiþ trial–in–run
þ key–repþ prev–typeþ �r þ Rþ resp–sideÞ
þ incongruent :
ðprev–errorsþ run–numþ itiþ trial–in–run
þ key–repþ prev–typeþ �r þ Rþ resp–sideÞ

As we examined congruent and incongruent trials sepa-
rately, our regression models jointly analyzed behavior
using two dummy variables (“congruent” and “incongru-
ent”) specifying the trial type. Similarly, the effect of the
average reward rate upon error rates was estimated using
a logistic regression, taking incorrect (vs. correct)
responses as the outcome variable:

error ∼ 0þ congruent þ incongruent þ congruent :
ðprv–errorsþ run–numþ trial–in–runþ key–rep
þ prev–typeþ �r þ Rþ resp–sideÞ þ incongruent :
ðprev–errorsþ run–numþ trial–in–runþ key–rep
þ prev–typeþ �r þ Rþ resp–sideÞ

All terms estimated at the fixed-effects level and as ran-
dom effects at the participant level, taking all continu-
ously valued predictor variables as within-participant
z scores. Two-tailed probability values and degrees of
freedom associated with each statistic were determined
using the Satterthwaite approximation implemented in
lmerTest (Kuznetsova, Brockhoff, & Christensen, 2017).

EEG Data and Processing

EEG data were acquired using an ActiveTwo system
(BioSemi) from 64 Ag/AgCl electrodes positioned accord-
ing to a 10–20 international system using a typical
64-channel montage. The data were recorded in an electri-
cally shielded room. Stimuli were presented on a 16-in.
CRT monitor and viewed from an approximate distance
of 120 cm. Horizontal and vertical EOGs were recorded
from the electrodes placed above and below the left eye
and 1 cm lateral to the left and right canthi.

Off-line, the EEG data were re-referenced to the average
of electrodes placed on the two earlobes. The continuous
data were high-pass filtered at 0.10 Hz (12 dB/oct, zero
phase-shift Butterworth filter) and decomposed into in-
dependent components using the infomax indepen-
dent component analysis algorithm implemented in the

MATLAB toolbox EEGLAB (Delorme & Makeig, 2004).
We inspected the independent components and used
ICLabel, an extension for EEGLAB (Pion-Tonachini,
Kreutz-Delgado, & Makeig, 2019), to identify components
that were classified as eye or muscle components. The
algorithm assigns probabilities to seven categories: brain,
muscle, eye, heart, line noise, channel noise, and other.
The extension also provides an interface (see https://
sccn.ucsd.edu/wiki/ICLabel) that shows the topography,
time course, power spectrum, and ERP image (sorted by
trial number) of each component. Guided by ICLabel’s
classification algorithm, for each participant, we excluded,
on average, two to three eye frontal components (e.g.,
blinks, vertical/horizontal eye movements) and one to
three muscle components (usually components that
showed maximal activity at temporal channels). Compo-
nents were considered blinks or eye movement compo-
nents and were excluded if (1) there was a high probability
(>85% and <1% brain) of them being classified as an eye-
related independent component, (2) the independent
component time course activity resembled blinks or
vertical/horizontal eyemovements (e.g., activity that looks
like step functions), and (3) the topography showed max-
imal activity at frontal channels. Components were consid-
ered asmuscle components and were excluded if (1) there
was a high probability (>95% muscle and <1% brain) of
them being classified as a muscle component and (2)
the power spectrum resembled noise or muscle activity
more than neural activity (i.e., power peaks at higher
frequencies rather than lower frequencies).
To prepare the preprocessed EEG data for GED (see the

Statistical Source Separation of EEG Data section), we
epoched the single-trial data relative to cue onset and Simon
stimulus onset (see Figure 1A). The single-trial cue-locked
epochs (time-locked to reward onset;−2.5 to 2.5 sec) were
used to test the hypothesis that trial-to-trial fluctuations in
average reward rate would modulate preparatory adjust-
ments to effortful control. The single-trial stimulus-locked
epochs (−0.2 to 0.8 sec) were used to demonstrate, as a
proof of principle, that the GED approach can effectively
identify components or statistical sources associated with
conflict and control-related neural processes.
The single-trial cue- and stimulus-locked epochs were

baseline-corrected by subtracting the mean amplitude
(−0.2 to 0 sec) before their respective event onsets. The
single-trial epochs were then low-pass filtered at 30 Hz,
with a finite impulse response filter (Hamming window
with 0.0194 passband ripple and 53 dB stopband attenua-
tion; upper passband edge of 30 Hz; upper transition
bandwidth of 7.50 Hz and −6 dB cutoff frequency of
33.75 Hz; filter length of 227 samples). Epochs containing
artifacts, with amplitudes exceeding ±150 μV or gradients
larger than 50 μV, were excluded from further analysis.
For the stimulus-locked analysis, we focused on the N2

conflict-related ERP component (Yeung, Botvinick, &
Cohen, 2004) and determined the component window
(peak: 0.28 sec) by inspecting the grand average ERP
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waveform at three midfrontal channels (Fz, FCz, Cz; see
Luck & Gaspelin, 2017). Then, for each single-trial epoch,
we extracted the amplitude (averaged across channels and
all time points in a 0.06-sec window [−0.25 to 0.31 sec]
around the peak) and fitted statistical models (see Statisti-
cal Analyses of EEG Data section) to these single-trial data
to examine the effects of congruency on component
amplitudes.

Statistical Source Separation of EEG Data

EEG data recorded at the scalp are a mixture of electric
fields, produced by separate underlying neural sources,
that propagate simultaneously via volume conduction to
all EEG scalp channels. Whereas standard univariate
channel-level analytic approaches do not directly address
this source mixing problem, recent work has proposed
GED-based multivariate methods that leverage the rich
spatiotemporal dynamics of EEG data to decompose
multichannel time-series voltage data into independent
but nonorthogonal statistical sources (Cohen, 2017, 2022;
Blankertz, Tomioka, Lemm, Kawanabe, & Muller, 2007;
Parra, Spence, Gerson, & Sajda, 2005; Parra & Sajda, 2003).
To validate the GED approach before applying it to test

our main hypothesis, we first applied GED to the stimulus-
locked single-trial epochs to examine classic conflict-
related neural processes in the Simon conflict task
(Yeung et al., 2004). After providing a proof-of-principle
demonstration, we then applied GED to the cue-locked
data to test our main hypothesis (i.e., average reward rate

modulates midfrontal activity). For each of the two sets of
analyses, we performed GED by first identifying two time
windows (Figure 2): One contained task-related neural sig-
nals (stimulus-locked analysis: 0.24–0.32 sec poststimulus
onset; cue-locked analysis: 0.10–0.75 sec postcue onset)
and the other task-unrelated or reference signals (−0.20
to 0 sec prestimulus or precue onset). Then, we computed
the S (using task-related signals) and R (using reference or
baseline signals) channel-by-channel covariance matrices
separately for activity in the two windows. The covariance
matrices were computed separately for each single-trial
epoch before averaging over epochs. GED was imple-
mented using the numpy Python library and the method
numpy.linalg.eig(S, R).

Note that the stimulus-locked window (0.24–0.32 sec)
was partly informed by previous work (e.g., Cavanagh,
Figueroa, et al., 2012; Yeung et al., 2004). On the one
hand, stimulus congruency often modulates the relatively
transient midfrontal N2 ERP component (often observed
about 0.2–0.3 sec after stimulus onset). On the other hand,
the cue-locked window was much longer (0.10–0.75 sec)
in the present study because we did not have specific
hypotheses about when these effects would occur and
how long they would last. However, as the average reward
rate depends on the integration of multiple variables
(e.g., reward on offer, time elapsed), it is likely that the
underlying neurocognitive processes involved in its com-
putation would last longer.

Because regularization can reduce noise and improve
the quality of the decomposition (Wong et al., 2018), we

Figure 2. GED on EEG data. From the recorded EEG data, we defined two periods of activity: pre-event (green) and post-event (blue) periods. We
then compute the respective channel-by-channel covariance matrices, R and S (typically, separately for each epoch and then compute the mean
covariance across epochs). GED decomposes multichannel EEG data into independent but nonorthogonal sources by finding weighted combinations
of activities across different channels. The weights,W, are defined by some criteria specified by the contrast between the S and R covariance matrices.
To generate a single-component time series, we select a column inW (i.e., one eigenvector) and use it to compute the linear weighted sum of activity
across all channels. The resulting component maximizes the difference between activities in the post-event (blue) and pre-event (green) periods,
resulting in hypothesis-driven source separation and dimension reduction.
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added 1% shrinkage regularization to the R matrix as fol-
lows (Zuure et al., 2020; Cohen, 2018): eR ¼ 1−γð ÞRþ
γαI , where α ¼ n−1 Pn

i¼1 λi , and γ 2 [0,1], where eR is
the regularized R covariance matrix, R is the original “ref-
erence” covariance matrix, I is the identity matrix, γ is the
amount of regularization (which can only take on values
between 0 and 1), λi is the eigenvalue for eigenvector i, n
is the number of eigenvectors, andα is themean eigenvalue
across all eigenvectors. To apply 1% shrinkage regulariza-
tion, γ was set to 0.01. Note that if γ= 0, 0% or no regular-
ization is applied, whereas γ = 1 is equivalent to 100%
regularization, which essentially turns GED into PCA.

Like PCA, GED decomposes the data into eigenvectors
and eigenvalues (the number of eigenvectors is equivalent
to the number of EEG channels), and each eigenvector,w,
is a new basis vector that acts as a spatial filter. When
applied to the data, a spatial filter up- or down-weighs
different channels’ activities to amplify or suppress activity
before summing across all weighted channels to derive the
component time series, w⊤X. The component’s topogra-
phy (also known as forward model of the filter or the
activation pattern; Haufe et al., 2014) is computed by
premultiplying the signal covariance matrix by the eigen-
vector, w⊤S (see component pattern in Figure 2).

We used GED to reduce the multidimensional EEG data
set into a single dimension or component. This component
is a statistical source that maximizes differences between
the postevent S and preevent R activities, and it often has
higher signal-to-noise ratio than the unfiltered EEG data
(Cohen, 2017; Parra & Sajda, 2003). To identify this compo-
nent, we visually inspected the component activation
patterns and selected the midfrontal component with the
largest eigenvalue for each participant (eigenvectors with
larger eigenvalues explain more variance). For the
stimulus-locked analysis, we selected a midfrontal compo-
nent because the N2 component is usually localized to
midfrontal channels (Yeung et al., 2004). We expected to
find a GED component that has the characteristics of an
N2 component—that is, the component amplitudes should
be more negative on incongruent (vs. congruent) Simon
task trials. Similarly, we also selected a midfrontal compo-
nent for the cue-locked analysis because previous work
has consistently shown that cognitive control processes
(e.g., 4–8 Hz theta-band activity) are most apparent over
midfrontal channels (Cavanagh & Frank, 2014; Cavanagh,
Zambrano-Vazquez, & Allen, 2012). Thus, we expected
the average reward rate to influence the amount of cogni-
tive effort allocated to the upcoming Simon task trial and
that neural activity associated with effort allocation would be
reflected in a GED component with a midfrontal topography.

Time–Frequency Analysis of Cue-locked GED
Component Activity

We performed time–frequency analysis on single-trial
GED cue-locked component data using custom Python

scripts and the MNE Python library (Gramfort et al.,
2014). Each trial consisted of 5 sec (−2.5 to 2.5 sec relative
to cue onset) to avoid potential time–frequency decompo-
sition edge artifacts. Time–frequency measures were com-
puted by multiplying the fast Fourier transform (FFT)
power spectrumof single-trial EEGdatawith the FFT power
spectrumof a set of complexMorlet wavelets and taking the
inverse FFT. The wavelet family is defined as a set of
Gaussian-windowed complex sine waves, e−i2πtfe−t2/2σ2

,
where t is time, f is frequency (increased from 1 to
25 Hz), and σ is the width or cycles of each frequency
band (increased from 3 to 10 in logarithmically spaced
steps). Time–frequency power was normalized by con-

verting to a decibel scale, 10 � log10 powert
powerbaseline

� �
, allowing

different frequency bands to be directly compared, and
powerbaseline is the mean power from −0.30 to −0.10 sec
precue onset. Two windows were selected for further
analysis based on examination of peak time–frequency
points in the grand average time–frequency representa-
tions: The first window was 4–6 Hz at 0.15–0.25 sec
(captured the positive 5-Hz theta peak at 0.20s), and
the second window was 6–8 Hz at 0.60–0.70 sec (cap-
tured the negative 7-Hz theta peak at 0.65 sec). For each
participant, single-trial power values in these two win-
dows were exported for statistical analyses.

Statistical Analyses of EEG Data

Stimulus-locked Analysis

To validate the GED approach, we fitted linear mixed-
effects single-trial regression models to examine the
effects of congruency (coded −0.5 [congruent] and 0.5
[incongruent], then within-participant z-scored) on the
N2 ERP and GED component amplitudes. The models
were fitted using lme4 [syntax: lmer(amplitude ∼
congruency) + (1 + congruency|participant)]. After
validating the GED approach by showing that GED
component amplitudes were sensitive to stimulus con-
gruency, we then explored whether the N2 and GED
component amplitudes were also sensitive to reward on
offer and average reward rate [syntax: lmer(amplitude ∼
congruency) * (reward_on_offer + average_reward_rate)
+ (1 + congruency * (reward_ on_offer + average_
reward_rate) | participant)] (reward on offer and average
reward rate were within-participant z-scored).

Cue-locked Analysis

For each participant, we regressed the component ampli-
tude at each time point on reward on offer and average
reward rate (y∼ b0 þ b1r þ b2�r) to obtain the regression
coefficients for average reward rate. We then performed
nonparametric permutation tests using the MNE library
(Gramfort et al., 2014; Gramfort, Strohmeier, Haueisen,
Hämäläinen, & Kowalski, 2013) to determine the temporal
clusters where the regression coefficients significantly
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differed from 0 (5000 permutations, threshold = 5.00,
p < .01).
We fitted linear mixed-effects single-trial regression

models to examine time–frequency power effects in the
two windows described above. Time–frequency power
values were regressed on reward on offer and average
reward rate; they were nested within participants, and
themodels included varying intercepts and slopes for both
regressors, which were within-participant z-scored. The
models were also fitted using lme4 [syntax: lmer( power ∼
reward_on_offer+average_reward_rate)+ (1+reward_
on_offer + average_reward_rate|participant)].

RESULTS

Behavioral Results

Mirroring typical Simon task performance (Forstmann
et al., 2008; Simon, 1990), we found that participantsmade
more errors (Figure 3A; mixed-effects logistic regression
β = 2.835, SE = 0.299, p < .0001) and were slower to
respond on incongruent trials compared with congruent
trials (Figure 3B; mixed-effects regression β = 0.1483,
SE = 0.0054, p < .0001).
We then turned to examining the effect of the average

reward rate upon Simon task performance. Notably, we
found that a high average reward rate engendered a
marked decrease in accuracy on the more difficult incon-
gruent trials (Figure 2A). Statistically, this accuracy effect
was confirmed by a mixed-effects logistic regression,
which revealed a significant effect of average reward rate

upon error rates only on incongruent trials (β = 0.2332,
SE = 0.1094, p = .033; see Table 1 for full coefficient esti-
mates) but not congruent trials (β = −0.0635, SE =
0.2221, p= .775). We observed amarginally significant lin-
ear contrast between the average reward effects on incon-
gruent versus congruent trials ( p = .063). Furthermore,
we found no main effects of reward on offer on either trial
type ( ps > .785), mirroring our previous work (Otto &
Daw, 2019) and observations by others (Beierholm et al.,
2013; Guitart-Masip et al., 2011). To put it another way,
the average reward rate of the environment, but not the
reward available for making a correct response, modu-
lated effortful control.

Although a high average reward rate appeared, visu-
ally, to slightly speed responses across both trial types
(Figure 3B), the mixed-effects RT regression only
revealed a nonsignificant (negative) effect of average
reward rate on congruent trials (β = −0.005, SE =
0.0034, p = .145; see Table 2) but no apparent effect on
incongruent trials (β = −0.0004, SE = 0.0057, p = .946).

EEG Results: Stimulus-locked
Conflict-related Activity

Consistent with previous work (Yeung et al., 2004), the
stimulus-locked N2 component was larger (i.e., more
negative) for incongruent (vs. congruent) Simon task tri-
als (β = −0.63, SE = 0.13, p < .001; Figure 4A). This
component peaked at 0.28 sec after stimulus onset: Con-
trasting the activity on incongruent and congruent trials

Figure 3. (A) When the average reward rate was high, participants made more errors on incongruent Simon trials, where they needed to override
inappropriate, prepotent responses. (B) Participants did not make significantly faster responses, in either congruent or incongruent trials, when the
average reward rate was high versus low. High and low average reward rate conditions were computed with a tertile split on participants’ experienced
average reward rate. Error bars indicate SEM.
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revealed a predominantly central topographical distribu-
tion (Figure 4B, right). Note that this topography is not
evident when averaging activity across all trials (Figure 4B,
left), likely because activity in other regions (e.g., P3 in the
parietal region) is stronger and thus masks the relatively
weak N2 effects.

We then applied the GED approach to all the stimulus-
locked EEG trials to demonstrate, as a proof of principle,
that the GED approach not only addresses the volume
conduction problem associated with regular ERP analyses
but also, most importantly, isolates task-relevant statistical
sources (Cohen, 2017) and, by extension, cognitive pro-
cesses of interest (see Figure 2). As a large body of work
has linked activity over midfrontal channels to conflict
processing and/or cognitive control processes (Cavanagh
& Frank, 2014; Cavanagh, Zambrano-Vazquez, et al., 2012),
we therefore identified, for each participant, a component
with maximally midfrontal spatial distribution (Figure 4D).
As with the N2 component (Figure 4A), activity in this
GED component (peaked at around 0.27 sec) was also
larger for incongruent (vs. congruent) Simon task trials
(β = −0.25, SE = 0.07, p < .001; Figure 4C). Unlike the
ERP topography for all trials (Figure 4B, left), the GED
component spatial distributions (i.e., activation patterns)

across all trials and the difference between incongruent
and congruent trials were maximal at midfrontal channels
(Figure 4D), which is unsurprising given that we explicitly
selected, separately for each participant, a component
with a predominantly midfrontal spatial distribution.
Having established the effectiveness of the GED ap-

proach for separating sources that are mixed at the scalp
via volume conduction and isolating stimulus-locked
conflict processes, we then explored whether trial-by-trial
fluctuations in reward on offer and average reward rate
also modulated these stimulus-locked conflict processes.
GED component amplitude was not significantly modu-
lated by reward on offer (β = 0.002, SE = 0.05, p =
.968), average reward (β = 0.06, SE = 0.06, p = .288),
and their interactions with stimulus congruency ( ps >
.151). Similarly, N2 amplitude was not significantly modu-
lated by reward on offer (β = 0.07, SE = 0.15, p = .618),
average reward (β = 0.09, SE = 0.14, p = .519), and their
interactions with stimulus congruency ( ps > .135).
These results suggest that stimulus-locked reactive con-
trol was not modulated by reward on offer or average
reward rate.

Table 1. Mixed-effects Logistic Regression Coefficients
Indicating the Influence of the Average Reward Rate and Other
Trial-by-trial Covariates upon Accuracy in the Simon Task

Coefficient Estimate (SE) p

congruent −4.8502 (0.4712) <.0001*

incongruent −1.4626 (0.2027) <.0001*

congruent:prev_errors 0.1202 (0.3364) .721

congruent:run_num −0.1256 (0.2422) .604

congruent:trial_in_run −0.0476 (0.1869) .799

congruent:key_rep 0.0462 (0.2078) .824

congruent:prev_type 1.0666 (0.2664) <.0001*

congruent:avg_reward −0.0635 (0.2221) .775

congruent:reward −0.0499 (0.1832) .785

congruent:resp_side −0.2232 (0.2149) .299

incongruent:prev_errors 0.8538 (0.1868) <.0001*

incongruent:run_num 0.1667 (0.1046) .111

incongruent:trial_in_run 0.003 (0.0912) .973

incongruent:key_rep −0.1661 (0.0857) .053

incongruent:prev_type −0.7975 (0.1407) <.0001*

incongruent:avg_reward 0.2332 (0.1094) .033*

incongruent:reward −0.0068 (0.0872) .938

incongruent:resp_side −0.0393 (0.0844) .642

* Significance at the .05 level.

Table 2. Mixed-effects Regression Coefficients Indicating the
Influence of the Average Reward Rate and a Number of Other
Trial-by-trial Covariates upon RTs in the Simon Task

Coefficient Estimate (SE) p

congruent 5.9015 (0.0157) <.0001*

incongruent 6.0783 (0.015) <.0001*

congruent:prev_errors 0.0655 (0.0143) <.0001*

congruent:run_num −0.0063 (0.0038) .102

congruent:iti −0.0166 (0.0028) <.0001*

congruent:trial_in_run 0.0015 (0.0032) .626

congruent:key_rep 0.0337 (0.0072) <.0001*

congruent:prev_type 0.0426 (0.0064) <.0001*

congruent:avg_reward −0.005 (0.0034) .145

congruent:reward −0.0039 (0.0028) .161

congruent:resp_side −0.0225 (0.0077) .004*

incongruent:prev_errors 0.0271 (0.0245) .269

incongruent:run_num −0.0099 (0.0061) .104

incongruent:iti −0.0126 (0.0048) .009*

incongruent:trial_in_run −0.0012 (0.0054) .827

incongruent:key_rep 0.0105 (0.0096) .274

incongruent:prev_type −0.0395 (0.0107) .0*

incongruent:avg_reward −0.0004 (0.0057) .946

incongruent:reward 0.0049 (0.005) .332

incongruent:resp_side −0.0209 (0.011) .059

* Significance at the .05 level.
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EEG Results: Cue-locked Activity Associated with
Average Reward Rate Processing

We now turn to our primary analysis of interest, in which
we examine whether preparatory (proactive) control neu-
ral activity is modulated by fluctuations in average reward
rate. We applied GED to the prestimulus cue-locked com-
ponent and identified a component with midfrontal
topography in each participant (Figure 5A; see inset)
because the behavioral results from the current and previ-
ous studies suggest that average reward rate modulates
effortful control allocation (Devine et al., 2021; Otto &
Daw, 2019; Sharp, Beierholm, LoParco, & Otto, in prepara-
tion), which, in turn, has been associated with changes in
theta-band dynamics over midfrontal channels (Cavanagh,
Figueroa, et al., 2012). The time-series activity of the mid-
frontal component is depicted in Figure 5A (top).
To examine whether component amplitude correlated

with average reward rate, for each participant, we
regressed the amplitude at each time point on reward
on offer, r, and average reward rate, �r. We then performed
nonparametric permutation tests to determine the time

windows or temporal clusters where the regression coef-
ficients for average reward rate were statistically significant
and different from 0 ( p < .01). The t-statistic time series
for the significant cluster (0.04–0.75 sec after cue onset) of
regression coefficients are shown Figure 5A (bottom).
Importantly, we observed a significant negative relation-
ship between average reward rate and component ampli-
tude: a higher average experienced reward rate—which
was associated with increased errors on incongruent
trials—was associated with reduced amplitude of the
component identified by GED (Figure 5B), and this effect
was statistically significant for an extended period (at least
0.71 sec; Figure 5A, blue shaded regions). Note that this
effect may have lasted even longer, but we had to restrict
our analyses from 0 to 0.75 sec to prevent overlap with
activity related to the processing of the stimulus, which
was shown between 0.75 and 1.25 sec after cue onset
(see Figure 1A).

The above results suggest that the GED approach has
effectively isolated a midfrontal component whose
source activity reflects the neural activity associated with
average reward rate processing across trials. We next

Figure 4. ERPs and GED of EEG Simon task stimulus-locked data. (A) The N2 component (0.25–0.31 sec) amplitude was more negative on
incongruent (vs. congruent) Simon conflict task trials. (B) Spatial topographies at peak N2 amplitude (0.28 sec) for grand average (all trials; left) and
the difference between incongruent and congruent trials (right). (C) A GED component time series also differentiated between congruent and
incongruent trials (0.24–0.30 sec). (D) We identified a GED component (see C) with midfrontal topography because the N2 ERP component is
usually observed in midfrontal channels (see A). Statistical analyses were performed on the mean activity in the blue-shaded regions.
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turned to time–frequency analysis of the component
time-series data to examine whether average reward
rate (but not reward on offer) modulated theta power
(4–8 Hz) in this midfrontal component. The analysis
revealed two distinct time windows where we observed
changes in theta power (Figure 5C). Theta power in the
earlier window (4–6 Hz, 0.15–0.25 sec) did not correlate
with reward on offer (β = 0.02, SE = 0.02, p = .739) or
average reward rate (β = 0.004, SE = 0.01, p = .432).
However, theta power in the later window (6–8 Hz,
0.60–0.70 sec) correlated negatively with average
reward rate (β = −0.02, SE = 0.01, p = .043), but not
reward on offer (β = −0.01, SE = 0.01, p = .256). To
ensure these estimates had not been biased by outliers

(because single-trial power estimates can be relatively
noisy), we applied a robust outlier detection approach,
which identified 5.88% of the trials with power estimates
±3 times the median absolute deviation (Leys, Delacre,
Mora, Lakens, & Ley, 2019). After excluding these single-
trial theta power outliers, we again found a negative
effect for average reward rate (β = −0.03, SE = 0.01,
p = .010) and a nonsignificant effect for reward on offer
(β=−0.01, SE=0.01, p= .589). That is, when average
reward rate is high, theta power in this midfrontal com-
ponent was reduced, suggesting reduced cognitive con-
trol allocation (Figure 5D). Mirroring the behavioral
analyses, the reward on offer did not appear to modulate
theta power in either direction.

Figure 5. GED of EEG cue-locked data identified a component associated with average reward rate processing. We identified a component with
midfrontal topography (see inset in A) because theta (4–8 Hz) activity in midfrontal channels (FCz, Cz) has been associated with cognitive control and
effort processes. (A) Component time series (top) and t-statistic time series indicating that from 0.04 to 0.75 sec, higher average reward rate was
associated with reduced component amplitude. Blue-shaded regions indicate statistically significant clusters identified using nonparametric
permutation tests (5000 permutations). (B) Component time-series activity for average reward rate (a continuous variable) split into four equally
sized bins. (C) Time–frequency representation of component time-series activity. The two highlighted windows showed changes in component theta
power (Window 1: 4–6 Hz at 0.15–0.25 sec; Window 2: 6–8 Hz at 0.60–0.70 sec). Only theta power in the second window correlated negatively and
significantly with average reward rate, such that higher average reward rate was associated with reduced component theta power. (D) Model-
predicted component theta power (6–8 Hz at 0.60–0.70 sec) as a function of average reward rate (±1 SE ). The gray lines are the average reward rate
effects for individual participants.
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DISCUSSION

The idea that we invest (vs. withhold) cognitive effort in
accordance with the costs and benefits of effort exertion
has been an influential proposal, which has found broad
empirical support and stemmed considerable interest in
the last decade (Otto et al., 2022; Frömer, Lin, Dean Wolf,
Inzlicht, & Shenhav, 2021; Inzlicht, Shenhav, & Olivola,
2018; Kool & Botvinick, 2018; Shenhav et al., 2017;
Kurzban et al., 2013). Within this framework, here we con-
sidered the more specific hypothesis that individuals
should reduce their use of cognitively costly processing
in accordance with the time-varying, experienced average
reward rate of the environment (Otto &Daw, 2019), exam-
ining behavioral and EEG signatures of cognitive control
modulations in accordance with the average reward rate,
in a Simon response conflict task. Behaviorally, we
observed that individuals reduced their level of (presum-
ably effortful) controlled processing—manifesting as
higher error rates on difficult, incongruent trials—when
the average reward rate was high but readily employed
cognitive control when the average reward rate was low,
replicating our previous performance results in simple
response conflict tasks (Devine et al., 2021; Otto & Daw,
2019).
Examining neural activity by applying GED to perform

statistical source separation on each participant’s single-
trial EEG time-series data (Cohen, 2017), we could iden-
tify, separately for each participant, one predominantly
midfrontal component to examine task-relevant cue-
locked neural activity that occurred before the presenta-
tion of the Simon stimulus (i.e., preparatory adjustments
to effortful control). We found that the average rate of
reward correlated negatively with theta power (6–8 Hz)
in amidfrontal component identified via GED. Specifically,
on trials in which the average reward rate per second was
high, theta power was reduced in the GED-identified
midfrontal component; conversely, when this average
reward rate was low, component theta power was
enhanced. In other words, echoing the observed modula-
tion of effortful behavior (evinced by incongruent trial
accuracy; Figure 3A), the trial-to-trial strength of partici-
pants’ component theta power—which we take to index
preparatory effortful control allocation (Umemoto et al.,
2019; Cavanagh& Frank, 2014)—also varied inversely with
the experienced trial-to-trial environmental average
reward rate. Together, these behavioral and neural
results provide evidence for the idea that the average
reward rate per unit time modulates adjustments to
effortful control.
Indeed, a body of previous work has found that activity

in midfrontal regions (in particular, theta-band oscillatory
activity) relates to the application of effortful control pro-
cesses involved in processing conflicting stimulus–
response requirements (Cohen, 2014, 2017; Cavanagh &
Frank, 2014). Enhancements in the strength of these theta
oscillations have been observed following events that

suggest an increased need for action monitoring—for
example, following an error or the experience of response
conflict (Cavanagh, Zambrano-Vazquez, et al., 2012). On
this view, these frontal midline theta dynamics are thought
to reflect synchronization of goal-relevant information in
the service of successful action selection, possibly reflect-
ing the control function of the ACC (Holroyd & Umemoto,
2016; Cavanagh & Frank, 2014). Of note, a large body of
theoretical and empirical work has implicated ACC in both
cost–benefit valuation of cognitive control and regulation
of the level control applied (Frömer et al., 2021; Shenhav
et al., 2017). In light of this proposed role for ACC func-
tion, the observerd trial-to-trial modulations of cue-locked
(prestimulus) midfrontal component theta power
observed here suggest the possibility that these modula-
tions of midfrontal activity reflect reductions in effortful
cognitive control prompted by the experienced average
reward rate.

Critically, our analyses of average reward-induced mod-
ulations in the strength of midfrontal component power
focused on the period of each trial “before” the Simon
stimulus onset (i.e., preparatory/proactive effortful control
adjustments; see Figure 1A), which suggests that these
modulations of component theta power did not stem from
the congruence of the current trial (as participants would
have no knowledge of stimulus congruence during this
period) but rather appear to evidence a calculation of
background average reward rate computed on the basis
of recent history of rewards obtained per second. Cru-
cially, even though the GED analysis was not informed
by the average reward rate or reward on offer on each trial
during the prestimulus period, the activity in the midfron-
tal component we identified was selectively sensitive to
only average reward rate, but not reward on offer. This
dissociation mirrors participants’ lack of behavioral sensi-
tivity to reward on offer—observed both here and in pre-
vious studies examining cognitive control (Devine et al.,
2021; Otto & Daw, 2019; Sharp et al., in preparation)
and motor vigor (Beierholm et al., 2013; Guitart-Masip
et al., 2011), which employ an identical average reward
rate manipulation. A feature of this available reward
manipulation worth noting is that reward incentives
change on a trial-to-trial basis, rather than manipulated
in a blockwise fashion, as typically found in studies
examining reward-motivated cognitive control (Otto &
Vassena, 2021; Yee, Crawford, Lamichhane, & Braver,
2021; Chiew & Braver, 2014; Padmala & Pessoa, 2011).
One possibility for the apparent lack of sensitivity to
reward on offer levels here—and in our previous
work—is that individuals are reluctant to adjust their con-
trol levels if they believe these control levels will only be
appropriate for very short periods of time. This idea dove-
tails with a recent theoretical proposal, building upon
the cost–benefit model of effort allocation, that a “recon-
figuration cost” accompanying adjustments to control
levels rides atop a control cost (Grahek, Leng, Prater
Fahey, Yee, & Shenhav, 2022).
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Crucially, average reward rate and reward on offer did
not modulate stimulus-locked neural activity, suggesting
that they did not influence reactive control. This finding
is consistent with recent work showing that people com-
bine information about expected reward and task efficacy
to proactively (but not reactively) adjust control allocation
(Frömer et al., 2021). Together, these behavioral and neu-
ral results provide evidence for the idea that the average
reward ratemodulates preparatory but not reactive adjust-
ments to effortful control.

Furthermore, as a proof of principle, we also used GED
to investigate a well-characterized ERP component—
namely, the stimulus-locked N2, a negative wave typically
observed between 200 and 350 msec, which has been
associated with incongruence in Simon and Simon-like
response conflict tasks (Folstein & Van Petten, 2008). As
expected, a traditional ERP analysis revealed a stronger
negative deflection on incongruent (vs. congruent) trials
across midline channels (Fz, FCz, and Cz). Mirroring this
result, our analysis of midfrontal GED-identified compo-
nent time-series data revealed a similar pattern of deflec-
tions (i.e., more negative deflections on incongruent
versus congruent trials) in a nearly identical time window.
In other words, our GED analysis of stimulus-locked EEG
was able to uncover component deflections that resemble
the typical patterns of N2 obtained in traditional ERP
analyses.

Our results also highlight the utility of applyingmultivar-
iate source separation techniques that not only decom-
pose multichannel EEG data into independent sources
but also simultaneously highlight task-relevant neural
activity and deemphasize task-unrelated background activ-
ity (e.g., Cohen, 2017). The midfrontal component we
identified clearly captured neural activity associated with
trial-to-trial fluctuations in average reward rate but not
reward on offer, but this dissociation only indicates that
reward on offer was not tracked by this particular midfron-
tal component. In fact, because GED produces as many
statistical components as the number of channels in the
EEG data, it is likely another component’s activity might
covary with reward on offer but not average reward rate.
However, this possibility does not affect our main finding
that average reward rate modulates proactive allocation of
cognitive resources and that we found evidence for this
modulation in a midfrontal component.

Finally, it is important to note that the strength of conclu-
sions drawn from these EEG-based results is constrained by
the exploratory nature of our analysis and the limited sam-
ple size of our study (n = 22). Although we did observe a
statistically significant behavioral effect of the average
reward rate upon incongruent trial accuracy—thereby rep-
licating a series of previous results obtained using employ-
ing Simon or Simon-like tasks (Devine et al., 2021; Otto &
Daw, 2019; Sharp et al., in preparation)—further research
is needed to bolster our conclusions, especially with
regard to the relationship between EEG and average rate
of reward. Specifically, we see a need for independent and

high-powered studies (1) to directly replicate how the
experienced average reward rate correlates with midfron-
tal activity and (2) to probe for possible correspondences
between behavioral reactivity (i.e., average reward
rate-driven modulations of accuracy) and average reward
rate-induced changes in midfrontal oscillatory power,
both at the intra- and interindividual levels.
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