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Abstract

Deep neural network models have revived long-standing debates
on the value of explanation versus prediction for advancing sci-
ence. Bowers et al.’s critique will not make these models go away,
but it is likely to prompt new work that seeks to reconcile
explanatory and predictive models, which could change how
we determine what constitutes valuable scientific knowledge.

Explanatory power and predictive accuracy are different quali-
ties, but are they inconsistent or incompatible? Bowers et al.’s
critique of deep neural network models of biological vision
resurfaces age-old debates and controversial questions in the
history of science (Breiman, 2001; Hempel & Oppenheim,
1948). First, must an explanatory model have predictive accu-
racy to be considered scientifically valuable? Similarly, must a
predictive model have explanatory power to have scientific
value? Second, what kinds of models are better for advancing
scientific knowledge, and how should we determine the scien-
tific value of models?

To appreciate the significance of Bowers et al.’s critique, let
us consider explanation and prediction as two orthogonal
dimensions rather than two extremes on a continuum. As
shown in Figure 1a, some of the most successful models and
theories in the history of humankind have occupied

different positions in this two-dimensional space: Theories
like relativity and quantum electrodynamics are located in the
top-right quadrant (i.e., very high explanatory power and pre-
dictive accuracy), whereas Darwinian evolution sits at the
bottom-right quadrant (i.e., high explanatory power but little
predictive accuracy, or at least cannot be tested for predictive
accuracy yet). Importantly, successful models in disciplines
ranging from physics to biology generally have high explana-
tory power.

Younger disciplines such as neuroscience and psychology – to
which biological vision belongs – often aspire to emulate more
established disciplines by developing models and theories with
increasing explanatory power over time. Bowers et al. also prefer
explanatory models and emphasize the importance of using con-
trolled laboratory experimentation to test causal mechanisms and
develop explanatory models and theories. Since researchers in
these disciplines have historically valued models with explanatory
power more than those with predictive accuracy, the consequence
is that existing models are mostly located in the bottom two quad-
rants (Fig. 1a; some explanatory power but relatively low predic-
tive accuracy). Models with high predictive accuracy are rare or
even unheard of (e.g., Eisenberg et al., 2019; Yarkoni &
Westfall, 2017).

Neural network models of biological vision have therefore
introduced a class of scientific models that occupies a unique
location in the two-dimensional space in Figure 1a (top-left quad-
rant). One could even argue that it might be the first time the dis-
cipline (including neuroscience and psychology) has produced
models that have greater predictive accuracy than explanatory
power. If so, it should come as no surprise that researchers –
many of whom have been trained to rely primarily on experimen-
tation to test theories – would feel uncomfortable with models
with such different qualities and even question the scientific
value of these models, despite recent calls to integrate explanation
and prediction in neighboring disciplines (Hofman et al., 2021;
Yarkoni & Westfall, 2017).

The current state of research on deep neural network models
of biological vision reflects a critical juncture in the history of
neuroscience as well as psychological and social science.

Figure 1 (Lin). Scientific value of models with different degrees of two qualities: Explanatory power and predictive accuracy. (a) Bowers et al. value explanation over
prediction, such that models with greater explanatory power are preferred. (b) Alternative value function that values both qualities equally. Hotter colors denote
greater scientific value, whereas cooler colors denote less scientific value.
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The long-standing tension between different philosophical
approaches to theory development no longer exists only in
the abstract – arguably for the first time, researchers have to
reconcile, in practice, explanatory models with their predictive
counterparts.

Bowers et al. emphasize the value of experimentation and the
need for models to explain a wide range of experimental results.
But this approach is not without limitations: When experiments
and models become overly wedded to each other, models might
lose touch with reality because they explain phenomena only
within but not beyond the laboratory (Lin, Werner, & Inzlicht,
2021).

Should explanation be favored over prediction? The prevailing
approach to theory development has certainly favored explanation
(Fig. 1a), but the state of research on deep neural network
models suggests that developing models with predictive accuracy
might be a complementary approach that could help to test the
relevance of explanatory models that have been developed
through controlled experimentation. Predictive models could
also be used to discover new explanations or causal mechanisms.
If so, it is conceivable that current and future generations of
researchers (who have been trained to also consider predictive
accuracy) might come to value explanation and prediction equally
(Fig. 1b).

Deep neural network models are becoming increasingly popu-
lar in a wide range of academic disciplines. Although Bowers
et al.’s critique is unlikely to reverse this trend, it highlights
how new methods and technological advances can turn age-old
philosophical debates into practical issues researchers now have
to grapple with. How the explanatory and predictive approaches
are reconciled or integrated in the coming years by researchers
working on biological vision is likely to have far-reaching conse-
quences on how researchers in other disciplines think about the-
ory development and the philosophy of science. And it is also
likely to reshape our views of what constitutes valid and valuable
scientific knowledge.
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Abstract

Bowers et al. argue that deep neural networks (DNNs) are poor
models of biological vision because they often learn to rival
human accuracy by relying on strategies that differ markedly
from those of humans. We show that this problem is worsening
as DNNs are becoming larger-scale and increasingly more accu-
rate, and prescribe methods for building DNNs that can reliably
model biological vision.

Over the past decade, vision scientists have turned to deep neural
networks (DNNs) to model biological vision. The popularity of
DNNs comes from their ability to achieve human-level perfor-
mance on visual tasks (Geirhos et al., 2021) and the seemingly
concomitant correspondence of their hidden units with biological
vision (Yamins et al., 2014). Bowers et al. marshal evidence from
psychology and neuroscience to argue that while DNNs and bio-
logical systems may achieve similar accuracy on visual bench-
marks, they often do so by relying on qualitatively different
visual features and strategies (Baker, Lu, Erlikhman, & Kellman,
2018; Malhotra, Evans, & Bowers, 2020, 2022). Based on these
findings, Bowers et al. call for a reevaluation of what DNNs can
tell us about biological vision and suggest dramatic adjustments
going forward, potentially even moving on from DNNs alto-
gether. Are DNNs the wrong paradigm for modeling biological
vision?

Systematically evaluating DNNs for biological vision

While this commentary identifies multiple shortcuts in DNNs
that are commonly used in vision science, such as ResNet and
AlexNet, it does not delve into the root causes of these issues
or how widespread they are across different DNN architectures
and training routines. We previously addressed these questions
with ClickMe, a web-based game in which human participants
teach DNNs how to recognize objects by highlighting category-
diagnostic visual features (Linsley, Eberhardt, Sharma, Gupta, &
Serre, 2017; Linsley, Shiebler, Eberhardt, & Serre, 2019). With
ClickMe, we collected annotations of the visual features that
humans rely on to recognize approximately 25% of ImageNet
images (https://serre-lab.github.io/Harmonization/). Human fea-
ture importance maps from ClickMe reveal startling regularity:
Animals were categorized by their faces, whereas inanimate
objects like cars were categorized by their wheels and headlights
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