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A B S T R A C T   

Recent experiments have found that prompting people to think about accuracy reduces misinformation sharing 
intentions. The process by which this effect operates, however, remains unclear. Do accuracy prompts cause 
people to “stop and think,” increasing deliberation? Or do they change what people think about, drawing 
attention to accuracy? Since these two accounts predict the same behavioral outcomes (i.e., increased sharing 
discernment following a prompt), we used computational modeling of sharing decisions with response time data, 
as well as out-of-sample ratings of headline perceived accuracy, to test the accounts’ divergent predictions across 
six studies (N = 5633). The results suggest that accuracy prompts do not increase the amount of deliberation 
people engage in. Instead, they increase the weight participants put on accuracy while deliberating. By showing 
that prompting people makes them think better even without thinking more, our results challenge common dual- 
process interpretations of the accuracy-prompt effect. Our findings also highlight the importance of under-
standing how social media distracts people from considering accuracy, and provide evidence for scalable in-
terventions that redirect people’s attention.   

Misinformation, particularly on social media, has become a focus of 
widespread societal concern and academic research (Lazer et al., 2018; 
Pennycook & Rand, 2021). Substantial effort has been invested in 
developing approaches to combat online misinformation. One such 
approach involves prompting users to consider accuracy, which has 
been shown to improve the quality of news they subsequently share 
(Epstein et al., 2021; Pennycook et al., 2021; Pennycook, McPhetres, 
Zhang, Lu, & Rand, 2020; Roozenbeek, Freeman, & van der Linden, 
2021). Although this effect generalizes across different accuracy 
prompts, news headlines, and countries (Arechar et al., 2022; Penny-
cook & Rand, 2022), how the effect operates remains unclear. Do ac-
curacy prompts cause people to think more, or do they change what 
people think about (or both)? Here we investigate this issue using 
computational modeling. 

One perspective is rooted in recent work indicating that people often 
fail to attend to accuracy when making sharing decisions on social 
media, even though they express a preference for sharing only accurate 
content and can often discern true from false news when asked to 
evaluate content accuracy (Pennycook, Epstein, et al., 2021). These 

seemingly contradictory findings reflect the consequences of having to 
navigate an information-rich world (Lorenz-Spreen, Mønsted, Hövel, & 
Lehmann, 2019; Simon, 1971) with limited attention capacities 
(Buschman & Kastner, 2015; Navon & Gopher, 1979): Online social 
media environments are designed to engage users and capture their 
attention, which then distracts them from considering content quality 
(Hills, 2019; Lorenz-Spreen, Lewandowsky, Sunstein, & Hertwig, 2020). 
Thus, according to the attention account, inattention to accuracy causes 
people to share misinformation unwittingly. As a result, simple accuracy 
prompts that redirect attention to accuracy (e.g., asking people to 
evaluate the accuracy of a random news headline) will increase the 
quality of news shared (Pennycook & Rand, 2022). 

Alternatively, accuracy prompts could cause people to share higher- 
quality news by encouraging people to deliberate more (even without 
increasing the relative share of attention directed to accuracy). This 
deliberation account follows from the dual-process perspective wherein 
intuitive “System 1” processes are distinguished from analytic “System 
2” processes (De Neys, 2021; Evans, 2008; Pennycook, Fugelsang, & 
Koehler, 2015). Specifically, dual-process research suggests that merely 
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increasing deliberation (i.e., “triggering System 2”; Fazio, 2020) could 
increase judgment accuracy by making people question their faulty in-
tuitions (Kahneman, 2011; Pennycook et al., 2015; Stanovich & West, 
2000). For example, the Cognitive Reflection Test (CRT; Frederick, 
2005) presents questions (e.g., “If you’re running a race and you pass the 
person in second place, what place are you in?”; Thomson & Oppen-
heimer, 2016) that cue an incorrect intuitive response (first place), but 
people who spend more time deliberating are more likely to answer 
correctly (second place) (Travers, Rolison, & Feeney, 2016). Notably, 
people who perform better on the CRT can not only better discern true 
from false news (Bago, Rand, & Pennycook, 2020; Pennycook & Rand, 
2019; Ross, Rand, & Pennycook, 2021), but may also share higher- 
quality news (Mosleh, Pennycook, Arechar, & Rand, 2021; Pennycook 
et al., 2020; but see Osmundsen, Bor, Vahlstrup, Bechmann, & Petersen, 
2021; Sirlin, Epstein, Arechar, & Rand, 2021). Furthermore, the 
accuracy-prompt effect on news discernment is stronger among those 
who score higher on the CRT (Pennycook & Rand, 2022). Thus, dual- 
process theories would suggest that accuracy prompts should 
encourage people to deliberate more, which increases the quality of 
news shared. 

Distinguishing between the attention and deliberation accounts can 
provide theoretical insights into why people share misinformation and 
practical insights into designing misinformation interventions. 
Crucially, our approach allows us to test the predictions of popular dual- 
process theories, which often assume that thinking more should be 

associated with thinking better. Namely, the key prediction is that 
prompting people to consider accuracy is effective specifically because it 
increases deliberation (which has been shown to facilitate evaluation of 
the accuracy of news; Pennycook, 2022; Pennycook & Rand, 2019). 

Here, we formalize these accounts using the drift-diffusion model 
(DDM) framework. DDMs assume a decision-making process in which an 
initial inclination favoring one discrete choice over another gradually 
changes over time, “drifting” in one direction until a decision boundary 
is reached (Ratcliff & McKoon, 2008). Fig. 1 illustrates various simulated 
trajectories, which plot the relative decision value in favor of sharing 
(upper bound) or not sharing (lower bound) a true (Fig. 1A) or false 
(Fig. 1B) news headline, as a function of time during a single choice. As 
the participant deliberates, the decision value “drifts” toward one 
boundary (corresponding to a discrete choice), along a line influenced 
by, among other things, the headline’s perceived accuracy. A decision is 
made once the decision value reaches one of the boundaries. 

Crucially, DDMs enable us to make separable inferences about the (i) 
amount of deliberation that occurs and (ii) extent to which that delib-
eration is influenced by accuracy. By decomposing the joint distribu-
tions of choices (sharing intentions) and response times into parameters 
that capture these different processes (Evans & Wagenmakers, 2019; 
Ratcliff & McKoon, 2008), DDMs allow us to more directly adjudicate 
between the attention and deliberation accounts of the accuracy-prompt 
effect. This modeling approach does not assume that longer response 
times (or more accurate responses) indicate more deliberation, which is 

Fig. 1. Social media news-sharing diffusion model. Simulated trajectories for a true (A) and false (B) headline. Trajectories in the right panels are truncated versions 
(due to reduced boundaries) of the trajectories in the left panels. 
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potentially problematic because response times are determined by 
multiple processes, and thus can be difficult to interpret. For example, it 
is possible (and common) for experimental manipulations to have no 
effect on average response times and yet still affect the DDM parameter 
capturing the amount of deliberation (Lin, Saunders, Friese, Evans, & 
Inzlicht, 2020). Specifically, faster decisions can arise not only from 
engaging in less deliberation (smaller boundary; Fig. 1 right panels) but 
also from having an equivalent (or even higher) boundary coupled with 
a steeper drift rate (i.e., a decider with a steeper drift rate will reach an 
equivalent decision boundary more quickly than a decider with a more 
shallow drift rate). 

Furthermore, the attention and deliberation accounts make the same 
predictions regarding choices—that accuracy prompts will increase 
sharing discernment (i.e., proportion true shared minus proportion false 
headlines shared). Thus, it is not enough to simply examine choices and 
response times, whereas computational modeling can help to differen-
tiate between these two accounts. 

If accuracy prompts make people deliberate more—as per the delib-
eration account rooted in dual-process theories—the decision boundaries 
should be larger in the accuracy prompt (vs. control) condition (Fig. 1, 
left versus right panels), allowing for more deliberation to occur before 
acting (Hypothesis 1). Alternatively, if accuracy prompts increase how 
much accuracy influences the trajectory of deliberation (i.e., increase 
accuracy’s influence on the slope along which the decision value 
drifts)—as per the attention account—then only weight placed on ac-
curacy (β1) (but not the amount of deliberation) should be increased in 
the accuracy prompt (vs. control) condition (Hypothesis 2). In this case, 
true (high perceived accuracy) headlines will tend to be shared (Fig. 1A, 
blue trajectories) whereas false (low perceived accuracy) headlines will 
not be shared (Fig. 1B, magenta trajectories). 

1. Method 

1.1. Participants 

The data come from a subset of the studies we conducted between 
2017 and 2020 (see Pennycook & Rand, 2022), but the analytic 
approach here is completely novel (preregistration: osf.io/6vmfa). We 
focused on six studies (Table 1) in which American participants were 
recruited online via Amazon Mechanical Turk or Lucid. Participants 
were randomly assigned to a (i) control condition in which they 
completed a news sharing task, or (ii) treatment condition in which they 
were prompted to think about accuracy prior to the news sharing task by 
being asked to evaluate the accuracy of a single neutral headline. 

The total sample size across the six studies is 6961 (ncontrol = 2867, 
ntreatment = 4094). Prior to preregistration, we randomly sampled 
roughly 20% of participants (n = 1328) from each condition within each 
study to perform exploratory analyses, leaving 80% (n = 5633) of the 
data “unseen.” The analyses and results below focus on the “unseen” 
data from these 5633 participants (ncontrol = 2321, ntreatment = 3312). 
Data and code can be found here: https://doi.org/10.17605/osf.io/ 
3ducn 

1.2. Preregistered exclusion criteria 

We first excluded trials with response times faster than 0.15 s or 
slower than 30 s (see Ratcliff & Tuerlinckx, 2002). We then used a robust 
outlier-detection approach to exclude trials with outlier response times 
(±3 median absolute deviation; see Leys, Ley, Klein, Bernard, & Licata, 
2013; Leys, Delacre, Mora, Lakens, & Ley, 2019). Finally, participants 
with fewer than 15 trials left were excluded. This process excluded 295 
(5.24%) participants (ncontrol = 128, ntreatment = 167), leaving 5338 
participants (ncontrol = 2193, ntreatment = 3145). 

1.3. Task design and procedure 

Only participants who indicated they used social media were 
allowed to participate. Participants were randomly assigned to either a 
control or a treatment. Then, they completed a news-sharing task. They 
were then shown a set of true and false news headlines taken from social 
media. Participants indicated how likely they would be to share the 
headline if they were to see it on social media. 

All the false headlines were found using popular fact-checking sites 
(e.g., snopes.com) whereas the true headlines came from reputable 
mainstream news sources. Headlines were generally selected for inclu-
sion based on prior pre-testing and were related to politics or COVID-19 
(for headline selection procedures, see Pennycook, Binnendyk, Newton, 
& Rand, 2021). For studies that used political headlines, the headlines 
were balanced on partisan lean based on pre-test results. 

1.4. Computational framework: drift-diffusion model 

Consistent with work on value-based choices (Hutcherson, Bushong, 
& Rangel, 2015; Tusche & Hutcherson, 2018), we assumed that news- 
sharing decisions can be described using a multi-attribute extension of 
the DDM (Ratcliff & McKoon, 2008; Smith & Ratcliff, 2004). In our 
framework (Fig. 1), the two boundaries are sharing intentions (share 
[upper bound], do not share [lower bound]). For the studies where 
sharing intentions were measured with a six-point Likert scale (Table 1), 
we binarized sharing intentions around the scale midpoint (corre-
sponding to being unlikely versus likely to share). Standard DDMs 
interpret the change over time in decision value for each trial or decision 
as reflecting the accumulation of evidence (“evidence” here refers to 
things that lead one to favor sharing or not sharing). To model the more 
general deliberation process, we interpret the decision value’s change 
over time as capturing a deliberative process wherein the decider de-
termines the relative decision value (“drift rate” parameter) of sharing 
versus not sharing a headline, and in doing so, adjusts away from an 
initial (intuitive) starting value prior to deliberation (“starting-point 
bias” parameter). A decision (share or not share) is made once the 
relative decision value signal reaches either the upper or lower bound 
(“boundary” parameter). As with standard DDMs, we also estimated the 
“non-decision time” parameter (e.g., time to encode stimulus and pro-
duce motor responses). 

Crucially, a variety of factors may influence the drift rate parameter, 
which reflects the relative decision value of sharing versus not sharing. 
Here, we focus specifically on the effect of the headline’s perceived 
accuracy to test the attention account’s prediction that accuracy prompts 
will increase the weight put on perceived accuracy when deliberating. 
Specifically, on each trial i, the relative decision value (vt, i.e., drift rate) 
at each instantaneous time t depends on the following: 

vt = β0 + β1 accuracyi + εt  

where accuracyi is the mean perceived accuracy rating (obtained from 
pre-tests with many participants) of a headline on trial i, β0 is the mean 
decision value (or drift rate), β1 is the weight placed on accuracy when 
deliberating, and εt is Gaussian noise on trial i. Note that headline 
perceived accuracy was measured with Likert scales and within- 
participant centered before model fitting to ensure β0 has a meaning-
ful interpretation (i.e., capturing the drift rate for headlines with 
average perceived accuracy; note this parameter was not the focus of our 
investigation or analyses). 

1.5. Preregistered models and analyses 

We used a differential evolution algorithm (Shinn, Lam, & Murray, 
2020) to estimate (separately for each participant) the five parameters 
described above: decision boundary, weight on accuracy (β1), mean drift 
rate or decision value (β0), starting-point bias, and non-decision time. As 
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noted in our theoretical accounts and preregistration, our focus is on the 
boundary and weight-on-accuracy (β1) parameters; the remaining pa-
rameters were estimated because they are standard DDM parameters 
that are required to ensure good model fits. 

To estimate the overall effects of condition across studies, we fit 
Bayesian mixed-effects models (maximal models with varying intercepts 
and slopes) using the R package brms (Bürkner, 2017): brm(outcome ~ 
condition * platform + (1 + condition | study)), where outcome is 
boundary, β1, sharing discernment, or response time; condition is con-
trol or treatment (coded − 0.5 and 0.5), study is study ID, and platform is 
the recruitment platform (Lucid [0] or Amazon MTurk [1]; this dummy- 
coded variable was then z-scored). The population-level or fixed-effects 
priors were N(0, SDoutcome[control] / 3). For each model, we ran four 
Markov chain Monte Carlo chains with 5000 samples and discarded the 
first 2500 samples (as burn-in). For each effect in the Bayesian model, 
we report the mean of the posterior samples and the 95% highest 
posterior-density interval (i.e., narrowest interval containing the speci-
fied mass). We also report Bayes factors (BF) by estimating Savage- 
Dickey density ratios (evidence against the point null b = 0), which 
provide relatively conservative estimates of the amount of evidence for 
the alternative (BF > 1) or null (BF < 1) hypothesis (Lee & Wagen-
makers, 2014). 

We also performed a preregistered robustness check where we used 
headline accuracy ratings that were separately obtained from partici-
pants classified as Democrats or Republicans to fit the models; that is, for 
Democrat (Republican) participants, the accuracy rating for any given 
headline was the mean rating obtained from Democrat (Republican) 
participants during pre-testing. This rating corresponds to the “believ-
ability” of headlines: If participants are paying greater attention to ac-
curacy, believability should have a greater influence on their choices to 
share. 

2. Results 

Beginning with choice data descriptives (Table 1), we summarize 
past findings that accuracy prompts increased the quality of partici-
pants’ sharing intentions (Pennycook & Rand, 2022). Sharing discern-
ment (proportion true headlines shared minus proportion false 
headlines shared) was higher in the treatment than control condition (b 
= 0.05 [0.004, 0.08], d = 0.20 [0.02, 0.34], BF = 3.90). There was also 
no meaningful difference between conditions in overall response times 
(b = 0.23 [− 0.12, 0.60], d = 0.06 [− 0.03, 0.17], BF = 0.47). This null 
effect provides a first indication that the prompts may not be causing 
people to deliberate more, although as discussed above, greater delib-
eration is not necessarily always associated with longer response times. 

We now turn to our main analyses, which use DDMs to directly test 
the predictions of the deliberation and attention accounts. The DDM 
parameter values by condition and recruitment platform are shown in 
Fig. 2A. We found a null effect of condition on the boundary parameter 
(b = − 0.06 [− 0.24, 0.14], d = − 0.02 [− 0.11, 0.06], BF = 0.13; Fig. 2B 
left). Thus, contrary to Hypothesis 1 (deliberation account), accuracy 
prompts do not appear to make people deliberate more about what to 

share. There were also null effects of platform (b = 0.05 [− 0.43, 0.56], d 
= 0.03 [− 0.20, 0.24], BF = 0.24) and condition-platform interaction (b 
= − 0.05 [− 0.22, 0.12], d = − 0.02 [− 0.10, 0.06], BF = 0.11). 

Conversely, there was a positive effect of condition on the weight put 
on accuracy (Fig. 2B right), providing support for Hypothesis 2 (atten-
tion account): Accuracy prompts increased the amount of attention 
people paid to headline accuracy when deciding what to share (b = 0.19 
[0.02, 0.37], d = 0.19 [0.01, 0.36], BF = 3.351). Once again, we found 
null effects of recruitment platform (b = − 0.02 [− 0.25, 0.22], d = − 0.02 
[− 0.26, 0.21], BF = 0.32) and condition-platform interaction (b = 0.01 
[− 0.14, 0.15], d = 0.01 [− 0.15, 0.15], BF = 0.20). 

Thus, our results indicate that accuracy prompts increased weight- 
on-accuracy, although the effect is small and there was substantial 
variation across the six studies (effects were positive in all but one study, 
though only one study had 95% posterior-density intervals that did not 
include 0; Fig. S2). When we used a different modeling approach, the 
effects were also small and varied across studies (see Supplementary 
Information; Figs. S6 and S7). In addition, the effects were similar for the 
study where sharing intentions were measured with a binary response 
scale (boundary: b = − 0.13 [− 0.52, 0.25]; weight-on-accuracy: b = 0.38 
[0.06, 0.72]), suggesting that the effects of treatment on the DDM pa-
rameters were robust to response format (i.e., binary response or 
binarized Likert data). Finally, the preregistered robustness check (using 
headline accuracy ratings separately obtained from participants classi-
fied as Democrats or Republicans) also found a similar pattern of results, 
suggesting that the effects are robust to how the perceived headline 
accuracy ratings were measured. Relative to the control condition, the 
treatment condition had larger weight-on-accuracy parameter estimates 
(b = 0.17 [0.01, 0.34], d = 0.18 [0.01, 0.35], BF = 2.94) but not 
boundary estimates (b = − 0.07 [− 0.29, 0.14], d = − 0.03 [− 0.13, 0.06], 
BF = 0.15). 

3. Discussion 

Here we used computational modeling to test two cognitive mech-
anisms by which accuracy prompts might increase the quality of news 
people share. We find small effects that are consistent with the attention 
account: Accuracy prompts increase sharing discernment by shifting 
peoples’ attention to accuracy while deciding what to share, rather than 
increasing the amount of deliberation per se (i.e., no treatment effects on 
boundary parameter or response times). These results challenge com-
mon dual-process interpretations of the accuracy-prompt effect, which 
assume that prompting people to consider accuracy is effective specif-
ically because it increases deliberation. Instead, they show that people 

Table 1 
Summary of studies       

Sample size Sharing Discernment RT 

Study Platform Headlines Trials Response Control Treatment Control Treatment Control Treatment 

B MTurk 24 16–24 6-point Likert 459 461 0.04 (0.19) 0.10 (0.20) 8.38 (3.78) 8.43 (3.24) 
C MTurk 24 15–24 6-point Likert 488 495 0.03 (0.23) 0.12 (0.27) 7.89 (3.11) 8.48 (3.68) 
G Lucid 20 15–20 6-point Likert 472 240 0.02 (0.22) 0.08 (0.25) 8.49 (4.12) 8.80 (4.16) 
H MTurk 20 15–20 6-point Likert 290 1453 0.15 (0.26) 0.16 (0.28) 6.92 (2.96) 6.96 (2.97) 
L Lucid 20 15–20 Binary 296 296 0.07 (0.24) 0.11 (0.26) 6.98 (4.13) 7.10 (4.12) 
P Lucid 20 15–20 6-point Likert 188 200 0.10 (0.24) 0.13 (0.26) 5.72 (3.88) 5.98 (3.70) 

Note. See Pennycook and Rand (2022) for details on each study including its original publication. The study identifiers correspond to those in Pennycook and Rand (2022). 
Sharing discernment: Proportion true headlines shared minus proportion false headlines shared. Standard deviations are in parentheses. 

1 If we directly tested our directional preregistered hypotheses with one-sided 
BFs (evidence for b > 0 against b < 0; Morey & Wagenmakers, 2014), the BFs 
would provide stronger evidence: weight-on-accuracy parameter BF = 38.80; 
boundary parameter BF = 0.34; sharing discernment BF = 56.80. The Bayes 
factors in the main text are evidence against the point null b = 0 (Savage-Dickey 
density ratios; Wagenmakers, Lodewyckx, Kuriyal, & Grasman, 2010), which 
are more conservative estimates. 
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can think better even without thinking more. 
These results resonate with recent misinformation research that 

suggests that “thinking better” is different from—and perhaps more 
important than—“thinking more.” For example, the disposition to spe-
cifically question one’s beliefs according to evidence (“actively open- 
minded thinking”) better predicted the ability to discern true from 
false COVID-19 news headlines than both CRT performance and one’s 
preference for effortful thinking or deliberation (Newton, Feeney, & 
Pennycook, 2021; see also Roozenbeek et al., 2022). 

Our findings contribute to the body of evidence challenging the ne-
cessity of deliberation for increasing accuracy that is a common 
component of dual-process theories (although perhaps not a necessary 
one; see Evans, 2012). For example, although analytic thinking corre-
lates positively with decision-making performance even after account-
ing for cognitive ability (Toplak, West, & Stanovich, 2011), the positive 
effects of analytic thinking can result from cognitive processes unrelated 
to increased deliberation. Indeed, when people are put under time 
pressure and are expected to provide intuitive or biased responses (due 
to insufficient time to trigger analytic processes), analytic thinking (e.g., 
CRT performance) still predicts decision-making performance (Bago & 
De Neys, 2019; Furlan, Agnoli, & Reyna, 2016; Raoelison, Thompson, & 
De Neys, 2020; Thompson, Pennycook, Trippas, & Evans, 2018), and 
people might rely even more on strategic decision processes (Roberts, 
Teoh, & Hutcherson, 2022). Similarly, the present results highlight how 
people can think better and share higher-quality news without neces-
sarily having deliberated more. 

Attention-based explanations are therefore more consistent with our 
accuracy-prompt results than dual-process accounts. People have 
limited attention capacities, but have to navigate information-rich on-
line social media environments (Hills, 2019; Lorenz-Spreen et al., 2020). 

Given such processing constraints, it is likely that people flexibly direct 
attention toward the most salient or relevant information in a context- 
sensitive manner. Thus, prompting people redirects their attentional 
priorities to accuracy, but does not increase the overall amount of 
deliberation and available attention. This interpretation is consistent 
with studies showing that strategic attention deployment—rather than 
dual-process theories—explains changes in generosity and choice biases 
(Roberts et al., 2022; Teoh & Hutcherson, 2022; Teoh, Yao, Cunning-
ham, & Hutcherson, 2020). 

While our data reveal that accuracy prompts redirect attention to 
perceived headline accuracy, they do not offer insights into what other 
factors participants are attending to, or whether the prompts change 
other attentional priorities. Future work could test these predictions by 
examining whether accuracy prompts also direct attention away from 
headline features like political consistency and sensationalism. 

It is important to bear in mind the difference between sharing and 
accuracy judgments, which have been shown to be largely distinct 
(Pennycook & Rand, 2021; Sirlin et al., 2021). Our findings challenge a 
dual-process interpretation of the accuracy prompt effect on news 
sharing. But a separate body of work has demonstrated correlationally 
(Arechar et al., 2022; Pennycook et al., 2020; Pennycook & Rand, 2019; 
Pennycook & Rand, 2021; Ross et al., 2021) and causally (Bago et al., 
2020; Martel, Pennycook, & Rand, 2020) that deliberation does increase 
people’s ability to discern true from false news when judging accuracy. 
These different findings further emphasize the gap between accuracy 
judgments and sharing intentions. Future work should also seek to 
reconcile correlational findings of more deliberative people sharing 
higher quality news (Mosleh et al., 2021; Pennycook et al., 2020; Ross 
et al., 2021; but see Osmundsen et al., 2021; Sirlin et al., 2021) with our 
results. Careful consideration of these conflicting findings may help to 

Fig. 2. Boundary and weight-on-accuracy parame-
ters. (A) Parameter values as a function of recruitment 
platform and condition. Violin plots show the distri-
bution of parameter values. White horizontal lines 
show the 25%, 50%, and 75% quantiles. (B) Bayesian 
posterior distributions for the effect of condition on 
boundary (left) and weight-on-accuracy (right) pa-
rameters. Positive estimates indicate larger parameter 
values in the treatment (vs. control) condition. Error 
bars are 95% and 89% highest posterior-density 
(HPD) intervals.   
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resolve important inconsistencies in the dual-process literature. 
In sum, our results indicate that accuracy prompts do not work by 

causing people to “stop and think” (United Nations, 2021), and therefore 
challenge common dual-process interpretations of the accuracy-prompt 
effect. Moreover, it is notoriously difficult to increase deliberation. 
Redirecting attention, however, might be relatively easier. Thus, the 
accuracy-prompt approach may be more effective and scalable than 
interventions that try to increase people’s propensity to engage in 
analytical thinking. For example, social media platforms could ask users 
to periodically consider content accuracy—particularly if platforms had 
reasons to believe the user is about to be exposed to misinformation. 
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