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1   |   INTRODUCTION

Should you take the elevator or the stairs? A growing lit-
erature of non-human animal studies indicates that such 
decisions are mediated partly by anterior cingulate cortex 
(ACC), a broad region of frontal midline cortex involved 

in cognitive control and decision making (Holroyd & 
Verguts,  2021). In particular, ACC weighs the effort-
related costs of choices against their expected rewards 
and appears critical for overcoming effort costs (Floresco 
& Ghods-Sharifi,  2007; Rudebeck et al.,  2006; Salamone 
et al., 2003; Walton et al., 2002, 2009). For example, ACC 
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Abstract
Anterior cingulate cortex (ACC), a key brain region involved in cognitive control 
and decision making, is suggested to mediate effort- and value-based decision 
making, but the specific role of ACC in this process remains debated. Here we 
used frontal midline theta (FMT) and the reward positivity (RewP) to examine 
ACC function in a value-based decision making task requiring physical effort. We 
investigated whether (1) FMT power is sensitive to the difficulty of the decision 
or to selecting effortful actions, and (2) RewP is sensitive to the subjective value 
of reward outcomes as a function of effort investment. On each trial, participants 
chose to execute a low-effort or a high-effort behavior (that required squeezing a 
hand-dynamometer) to obtain smaller or larger rewards, respectively, while their 
brainwaves were recorded. We replicated prior findings that tonic FMT increased 
over the course of the hour-long task, which suggests increased application of 
control in the face of growing fatigue. RewP amplitude also increased follow-
ing execution of high-effort compared to low-effort behavior, consistent with 
increased valuation of reward outcomes by ACC. Although neither phasic nor 
tonic FMT were associated with decision difficulty or effort selection per se, an 
exploratory analysis revealed that the interaction of phasic FMT and expected 
value of choice predicted effort choice. This interaction suggests that phasic FMT 
increases specifically under situations of decision difficulty when participants ul-
timately select a high-effort choice. These results point to a unique role for ACC 
in motivating and persisting at effortful behavior when decision conflict is high.
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lesions cause rodents to shift their preference away from 
high-effort, high-reward choices to low-effort, low-reward 
choices (e.g., Floresco & Ghods-Sharifi,  2007; Hosking 
et al., 2014; Walton et al., 2002, 2009), and hinder mon-
keys' ability to sustain optimal behavior (Kennerley et al., 
2006). These studies highlight a role for ACC in deciding 
specifically whether the expected benefit of an action is 
worth the incurred cost in effort, in contrast to other types 
of costs such as temporal delays (Cardinal et al.,  2001; 
Rudebeck et al., 2006).

Human studies echo these findings. ACC lesions lead 
to apathy (Le Heron et al.,  2019, for review) whereas 
electrical stimulation of ACC induces a subjective feel-
ing of perseverance in the face of challenges (Caruana 
et al., 2018; Parvizi et al., 2013). Further, several human 
neuroimaging studies have revealed strong ACC activa-
tion when participants evaluate the predicted value of ex-
pending cognitive and physical effort against the incurred 
costs of the expenditure (e.g., Bonnelle et al., 2016; Chong 
et al., 2017; Croxson et al., 2009; Kurniawan et al., 2010; 
Skvortsova et al.,  2014; Vassena et al.,  2014), as well as 
when participants instigate effortful actions (e.g., Croxson 
et al., 2009; Bonnelle et al., 2016; c.f., Parvizi et al., 2013; 
Caruana et al.,  2018). Computational theories have pro-
posed a role for ACC in determining the value of apply-
ing effortful control and motivating the achievement of 
high-level task goals (Holroyd & McClure, 2015; Holroyd 
& Verguts,  2021; Holroyd & Yeung,  2012; Shenhav 
et al., 2013, 2017; Verguts et al., 2015). Although these the-
ories generally agree that ACC is involved in regulating 
effortful control, especially when behavior is challenging, 
the precise mechanism of ACC function continues to be 
debated (Holroyd & Verguts,  2021; Vassena et al.,  2017, 
2020).

Measures of cognitive control and reward process-
ing recorded from the human electroencephalogram 
(EEG) can help to answer this question (Holroyd & 
Umemoto,  2016; Umemoto, Inzlicht, & Holroyd,  2019). 
In particular, frontal midline theta (FMT), consisting 
of 4 to 8  Hz neural oscillations distributed over frontal-
central regions of the human scalp, is commonly observed 
during cognitive control processes involving effort (e.g., 
Cavanagh & Frank, 2014; Holroyd & Umemoto, 2016). For 
example, brief, phasic changes in FMT power are often 
observed following receipt of negative feedback stimuli 
(e.g., Bernat et al., 2015; Foti et al., 2015), during value-
based decision-making (Lin et al., 2018), and immediately 
following error commission and periods of response con-
flict (e.g., Cavanagh & Frank, 2014; Luu & Tucker, 2001). 
By contrast, more long-lasting FMT power is observed 
over extended periods of task performance involving  
sustained mental effort (Hsieh & Ranganath,  2014; 
Mitchell et al., 2008; Umemoto, Inzlicht, & Holroyd, 2019; 

Wascher et al.,  2014). Thus, phasic FMT appears to re-
flect transient reactivity to discrete, task-relevant events, 
whereas tonic FMT appears to be related to sustained 
cognitive processing. Source localization studies of FMT 
(both phasic and tonic) as well as intracranial recordings 
in humans and non-human animals point to ACC as the 
neural generator (see Holroyd & Umemoto, 2016 for re-
view). These findings suggest that FMT activity generated 
by the ACC plays important roles in implementing control 
processes (Cavanagh & Frank, 2014; Verguts, 2017).

Further, the reward positivity (RewP), also called the 
feedback error-related negativity, is an event-related po-
tential (ERP) component that is sensitive to the valence 
of external feedback (Miltner et al., 1997). RewP has been 
proposed to be elicited by phasic midbrain dopamine 
reward prediction error signals modulating ACC activ-
ity (Holroyd & Coles,  2002). A meta-analysis supports 
the proposal that the RewP indexes a reward prediction 
error signal (Sambrook & Goslin,  2015). Although the 
source of the RewP is controversial because of the inverse 
problem (Michel et al.,  2004), the dominant hypothe-
sis is that the RewP is produced in the ACC (Holroyd & 
Umemoto, 2016; Walsh & Anderson, 2012). Further, RewP 
amplitude appears to index subjective levels of reward val-
uation (Holroyd & Umemoto, 2016 for review). For exam-
ple, RewP amplitude correlates positively with individual 
differences in reward sensitivity (Bress & Hajcak,  2013; 
Cooper et al.,  2014; Liu et al.,  2014; Umemoto & 
Holroyd, 2017), and negatively with individual differences 
in self-reported depression levels (e.g., Proudfit,  2015; 
Umemoto & Holroyd, 2017).

EEG studies on effort and reward integration have 
begun only recently, focusing mostly on cognitive ef-
fort (Harmon-Jones, Clarke, et al.,  2020; Harmon-Jones, 
Willoughby, et al.,  2020; Ma et al.,  2014; Umemoto, 
Inzlicht, & Holroyd,  2019; see also Gheza et al.,  2018). 
These studies hint at a reward-effort link, but the results 
are not straightforward. One study reported increased 
RewP amplitude with increased cognitive demand (Ma 
et al.,  2014), whereas other studies showed a larger 
RewP to high-effort only within a high-effort condition 
(Harmon-Jones, Clarke, et al.,  2020), or only when par-
ticipants believed that their efforts were instrumental 
in bringing about the reward outcomes (Harmon-Jones, 
Willoughby, et al.,  2020). Examining a slightly different 
question, Gheza et al. (2018) reported a larger RewP when 
participants could avoid expending effort (clicking with a 
mouse on dots on a computer screen), which was associ-
ated with higher participant ratings of pleasantness and 
relief. However, FMT in that study was not modulated by 
effort costs.

Although these studies provide some evidence that 
effort-related processing by ACC may interact with the 
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subjective valuation of reward outcomes, a number of 
important questions remain. Although decades of ani-
mal work on this issue have utilized physical effort (e.g., 
Floresco & Ghods-Sharifi,  2007; Rudebeck et al.,  2006; 
Salamone et al.,  2003; Walton et al.,  2002, 2009; but see 
Hosking et al., 2014), most human research has involved 
cognitive effort, leaving open the possibility that physi-
cal effort could more strongly impact control and reward 
processing in humans. It is also unclear how effortful 
control might impact the subjective valuation of reward, 
as effort expenditure appears to increase the value of re-
warded outcomes once obtained (i.e., Inzlicht et al., 2018, 
for a review). Conversely, the value of reward outcomes 
can influence the amount of effort participants invest in 
a task, as people tend to work harder for larger rewards 
(Frömer et al.,  2021; Shenhav et al.,  2013; Westbrook & 
Braver, 2015).

1.1  |  Current study

The goal of this study was to clarify these questions. We 
examined neural signatures of effortful control (FMT 
power) and reward valuation (RewP amplitude) of sub-
jects engaged in a physically demanding task: squeezing 
a hand-grip. Toward this end, we adapted the Effort-
Expenditure for Rewards Task (Treadway et al.,  2009), 
which has been used previously to examine individual 
differences in effort allocation (Geaney et al.,  2015; 
Treadway et al., 2009, 2012), for an EEG experiment. This 
task allowed us to investigate both effort-related decision-
 and reward-processes. On each trial, participants chose 
between performing a low-effort behavior (a low-force 
squeeze on a hand-dynamometer) and a high-effort be-
havior (a high-force squeeze on the hand-dynamometer) 
to obtain smaller or larger rewards, respectively, and then 
to immediately carry out that behavior.

We considered two possibilities regarding the role of 
ACC in effortful control. First, the choice difficulty ac-
count relates ACC activity to the period of choice evalua-
tion (Figure 1). Difficult task choices (for example, when 
the options are of equal subjective value) often mani-
fest as increased ACC activity, regardless of whether a 
task requires physical or cognitive effort (e.g., Botvinick 
et al., 2001; Shenhav et al., 2016). This view predicts in-
creased FMT power when the subjective values of the 
possible options are similar, for example, when deciding 
between a high-effort/high-reward option (100 push-ups 
for $50) and a low-effort/low-reward option (1 push-up for 
10 cents). Although the subjective values of the decisions 
cannot be directly observed, they give rise to increased 
reaction times (RTs) when participants choose between 
options with similar subjective values (Lin et al.,  2018;  

Shenhav et al.,  2014). Hence, on this view FMT power 
should correlate positively with decision RTs.

Second, the effort selection account relates ACC activity 
to effort regulation, namely the process of selecting effort-
ful actions (Figure  1) (e.g., Holroyd & Umemoto,  2016; 
Shenhav et al.,  2013; Vassena et al.,  2017; Verguts 
et al.,  2015). This view predicts increased ACC activity 
when participants choose a high-effort option irrespective 
of the subjective reward values of the options and the dif-
ficulty of the choice. Thus, in contrast to the choice diffi-
culty account, this predicts enhanced FMT power when 
deciding between a high-effort/high-reward option (e.g., 
100 push-ups for $50) and a low-effort/low-reward option 
(1 push-up for 10 cents) only when the high-effort choice 
is in fact selected, but not when the low-effort choice is 
selected.

The results of prior FMT studies support both the 
task difficulty account (e.g., Lin et al.,  2018; Pinner 
& Cavanagh,  2017) and the effort selection account 
(e.g., Umemoto, Inzlicht, & Holroyd,  2019; Wascher 
et al., 2014). We therefore tested these accounts by exam-
ining FMT power as a proxy for ACC activity. Specifically, 
we recorded FMT from participants making effort choices 
(prior to them carrying out the chosen options), and then 
tested whether FMT power is more sensitive to choice dif-
ficulty or effort selection. Because we were agnostic about 
whether these processes would manifest in phasic or tonic 
FMT, we examined both phenomena and compared dif-
ferent models using standard model selection criteria. 
Additionally, we explored whether FMT and its interac-
tion with expected value (EV) may predict participants' 
choice behavior.

Lastly, we also explored how effort production inter-
acted with reward valuation. That is, given the increased 
engagement of ACC in effortful behavior, we hypothe-
sized that effort production would increase RewP ampli-
tude, even after controlling for reward magnitude.

F I G U R E  1   Schematic illustrating hypothesized processes 
involved in effort- and reward-based decision making in the Effort-
Expenditure for Rewards Task (Treadway et al., 2009). On each 
trial, participants were required to evaluate a high-effort and a low-
effort choice (“Choice Evaluation”); select either choice (“Choice 
Selection”); squeeze a hand-dynamometer with an amount of force 
required by that choice (“Effort Production”); and see the outcome 
of that choice (“Reward Valuation”). The Choice Difficulty account 
relates FMT to the process of “Choice Evaluation”, whereas the 
Effort Selection account relates FMT to the process of “Choice 
Selection”. Arrow indicates direction of time on each trial.
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2   |   METHOD

2.1  |  Participants

Seventy-seven undergraduate students were recruited 
from the University of Victoria Department of Psychology 
subject pool to fulfill a course requirement or earn bonus 
credits. The sample size was determined based on the past 
study that we modified for the current study (Treadway 
et al., 2009). Because the current study was an EEG study, 
we recruited additional subjects, assuming that up to 
15% of subjects may need to be excluded due to excessive 
motor artifacts and hardware problems. Further, we per-
formed a sensitivity analysis using the summary-statistics-
based power analysis method developed by Murayama 
et al. (2022), which suggests that given our sample size, we 
could detect at least d = 0.36 (relatively small-to-medium 
effect sizes) with 80% statistical power (see Figure S1). All 
subjects (26 males, 8 left-handed, age range = 18–35 years, 
mean age = 21.5 ± 3.8 years) had normal or corrected-to-
normal vision. Each participant also received a monetary 
bonus in addition to the credits, the amount of which de-
pended on their task performance (see below). All subjects 
provided informed consent as approved by the local re-
search ethics committee. The experiment was conducted 
in accordance with the ethical standards prescribed in the 
1964 Declaration of Helsinki, and approved by the Human 
Research Ethics Board at the University of Victoria.

2.2  |  Grip force calibration

Physical effort expenditure was measured using a hand-
dynamometer (Neulog, U.S.). Each participant's maxi-
mum grip force was assessed before the experiment 
began. The hand-dynamometer was affixed to the table 
in a straight-up position in front of the computer screen 
(approximately 36 cm from the participants and 18 cm 
from the computer screen). Participants exerted their  
maximum grip force for 2 s, 5 times for both their right 
hand and left hand. The largest force produced by each 
hand was then taken as the maximum grip force for that 
hand throughout the experiment. Participants also re-
peated this calibration procedure 3 times for each hand at 
the completion of the experiment.

2.3  |  Procedure

Participants were seated comfortably in front of a com-
puter monitor (1024 by 1280 pixels) at a distance of about 
60 cm in a dimly lit room. The task was programmed 
in MATLAB (MathWorks, Natick, MA, USA) using 

the Psychophysics Toolbox extension (Brainard,  1997; 
Pelli, 1997). Instructions were given to participants both 
verbally and in a written format on a computer screen. 
Participants were told that they would be using a hand-
dynamometer to perform a task, and that they would have 
an opportunity to win monetary rewards. This was fol-
lowed by the calibration procedure to measure each par-
ticipant's maximum grip force (see Section 2.2).

On each trial participants selected between a low-
effort, small reward (“Easy”) choice and a high-effort, 
large reward (“Hard”) choice, as indicated by the words 
“Easy” and “Hard” presented in black against a gray back-
ground (0.4° by 1.1° square visual angle each) (Figure 2a, 
1st panel). The low-effort choice required participants to 
squeeze a hand-dynamometer with approximately 40% 
of their maximum grip force calibrated above plus trial-
varying random jitter drawn from a standard normal dis-
tribution with a mean of 40 and a standard deviation of 1 
(using the randn function of MATLAB). By contrast, the 
high-effort choice required participants to squeeze the de-
vice with approximately 85% of their maximum grip force 
plus trial-varying random jitter drawn from a standard 
normal distribution with a mean of 85% and a standard 
deviation of 1.

2.3.1  |  Practice phase

Participants practiced the task in two steps. First, partic-
ipants were familiarized with the level of effort required 
to carry out the low-effort and high-effort choices for 
both hands. Participants were presented with the two 
choice options (Figure 2a, 1st panel), and selected one of 
the effort choices by pressing the right or the left arrow 
key. Their choice was then highlighted by a red frame 
for 1  s (Figure  2a, 2nd panel). The word “Ready” was 
then presented for 1 s (Figure 2a, 3th panel), after which 
a white rectangular bar bisected with a red horizon-
tal line was presented (1.8° square visual angle width; 
note that height depended on each subject's calibration 
force), which prompted the participants to squeeze the 
device (Figure  2a, 4th panel). The height of the white 
rectangular bar was adjusted to the maximum grip force 
for the responding hand of that participant, with the 
half-way point located at the center of the screen. The 
red horizontal line indicated the minimum grip force 
required to achieve a successful squeeze response for 
that trial. As participants squeezed the dynamometer, 
the base of the white bar was replaced with the color 
black, the height of which was proportional to the ap-
plied force, providing visual feedback to the subject on 
the strength of their response (Figure  2a, 4th panel). 
Participants were given 2 s maximum for their response 
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to exceed the threshold, after which the image was re-
placed with a fixation dot at the center of the screen for 
1 s (Figure 2a, 5th panel). If the applied force exceeded 
the response threshold, then the words “Good job!” ap-
peared at the center of the screen for 1 s, otherwise the 
words “Squeeze harder” were presented (Figure 2a, 6th 
panel). Finally, the instructions “Release Grip” appeared 
at the center of the screen for 500 ms to ensure that the 
participants relaxed their grip before starting the next 
trial (Figure 2a, last panel from left). The location of the 
effort choices (left or right side of the screen) and there-
fore mappings between the choice and the response fin-
ger were counterbalanced across participants but were 
maintained throughout the experiment for each partici-
pant. Participants practiced executing the low-effort and 
high-effort choices once each for each hand, for a total 
of four trials.

Second, participants were introduced to the potential 
rewards and reward probabilities. Participants were in-
structed that, following successful responses, the baseline 
low-effort option would always yield a chance to earn 2 
cents reward, whereas the high-effort option would yield 
a chance to earn between 3 and 8 cents reward (in 1 cent 
increments for a total of 6 reward levels which were de-
termined at random with equal probability on each trial) 
(see Figure  2b, 2nd panel, which shows an example for 

the task proper). The rewards offered for the two effort 
choices were shown in black (0.4° by 0.4° square visual 
angle) against a gray background underneath the words 
“Easy” and “Hard” on each trial. The probability of ob-
taining the reward, which varied among low (20%), me-
dium (50%) and high (80%) values, was presented as a blue 
pie chart in the center of the screen (3.1° by 3.1° square 
visual angle; each probability was equally likely to occur 
during practice) (Figure 2b, 2nd panel for example). Note 
that the probability for reward was the same irrespective of 
whether the low-effort or high-effort choice was selected. 
Participants selected their choice and then executed it as 
described above. For half of the participants the image of 
an apple indicated receipt of a reward and the image of 
an orange indicated receipt of a no-reward (3.1° by 3.1° 
square visual angle. Figure  2b, 7th panel for example). 
This association was reversed for the other half of partic-
ipants. Participants received a reward only if the applied 
force exceeded the response threshold, and according to 
the given reward probability for that trial. If the applied 
force did not exceed the response threshold, then a no-
reward feedback stimulus was presented. Participants 
were given six practice trials (three trials with each hand) 
involving reward probability and amount. Participants 
were given their accumulated reward upon completion of 
the practice phase (between 5 and 25 cents).

F I G U R E  2   An example trial during the initial Practice Phase (a) and during the actual task (b). During the Practice Phase, participants 
were first introduced to and practiced the low-effort (Easy) and high-effort (Hard) choice without reward and probability information. 
Successfully performing the required choice resulted in either “Good job!” or “Squeeze harder!” feedback. At the end of the Practice Phase, 
information about the reward offered and reward probability on each trial was also provided. The low-effort choice reward was always 2 
cents, whereas the high-effort choice reward varied at random from 3 to 8 cents in 1 cent increments. The blue pie chart indicated reward 
probability of either 20%, 50%, or 80% (the pie chart in b indicates an 80% probability on this example trial). An image of an apple (shown in 
b) or an orange (not shown) indicated a receipt of reward offered or not (counterbalanced across subjects). To earn the reward, participants 
were required to squeeze the dynamometer at the effort level indicated by their choice. If participants successfully produced the required 
amount of effort, then they were provided with reward feedback according to the specified reward probability. During the actual task (b), the 
choice selection deadline was 4 s on each trial.
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2.3.2  |  Task proper

Following the Practice Phase, the actual experiment began. 
The task proper (Figure  2b) was identical to the Practice 
Phase except that (1) each trial began with a fixation dot pre-
sented at the center of the screen (800 ms; Figure 2b, 1st panel 
from left), (2) the word “Choose:” and the cents sign “₵” did 
not appear during the choice panel, and (3) the choice dead-
line was extended to 4 s (Figure 2b, 2nd & 3rd panels from 
left). For example, if a participant made a response after 1 s, 
then his/her choice was highlighted for the remaining 3 s. 
If participants did not make a response within the response 
deadline, the message “Respond faster!” was presented for 
500 ms and the same trial repeated (this occurred between 
0–3 times per participant). Participants completed eight 
blocks of 39 trials each, which lasted approximately 1 hr in 
total. Importantly, due to a time constraint, trials with 20% 
and 80% reward probability occurred less (7 trials each per 
block) than trials with 50% reward probability (25 trials per 
block). The reward probability on each trial was randomly 
selected within this constraint (i.e., 18% chance that either 
the 20% and 80% reward probability would occur, and 64% 
chance that the 50% reward probability would occur). Each 
block lasted about 7  minutes with self-paced rest periods 
between blocks. Participants were told that the goal of the 
study was to perform the task as best as they could. Note 
that it was up to the participants which effort choice (high 
vs. low) to select and execute on each trial; therefore, this 
varied across participants. At the beginning of each block of 
trials instructions were presented on the computer screen 
indicating which hand they should use to grip the device for 
the upcoming block of trials (e.g., “RIGHT hand”), which 
alternated across blocks in order to minimize muscle fatigue 
(the first hand was determined randomly for each partici-
pant). After completing each block of trials the participants 
were queried on the computer screen about the correct 
mapping between the fruit images and reward feedback 
stimuli (i.e., “Press the 1 key if apple is the reward and press 
the 2 key if orange is the reward”), in order to ensure that 
they remembered the designated valences of the feedback 
stimuli. The summed total of their accumulated earnings 
for that block was also presented. Upon completion of the 
task, participants were shown the total amount of reward 
they had earned, which ranged between $4 and $8.80. At 
the end of the experiment each participant's grip force was 
re-calibrated three times for each hand.

2.4  |  EEG data acquisition and processing

EEG was recorded using a montage of 41 electrode sites 
in accordance to the extended international 10–20 sys-
tem (Jasper, 1958). Signals were acquired using Ag/AgCl 

ring electrodes mounted in a nylon electrode cap with an 
abrasive, conductive gel (EASYCAP GmbH, Herrsching-
Breitbrunn, Germany). Signals were amplified by low-
noise electrode differential amplifiers with a frequency 
response high cut-off at 50 Hz (90 dB–octave roll off) and 
digitized at a rate of 250 samples per second. Digitized sig-
nals were recorded to disk using Brain Vision Recorder 
software (Brain Products GmbH, Munich, Germany). 
Interelectrode impedances were maintained below 20 kΩ. 
Two electrodes were also placed on the left and right mas-
toids. The EEG was recorded using the average reference. 
Electroocculogram (EOG) was recorded for the purpose 
of artifact correction; horizontal EOG was recorded from 
the external canthi of both eyes, and vertical EOG was 
recorded from the suborbit of the right eye and electrode 
channel Fp2.

Analysis and data visualization were performed on 
MATLAB using the EEGLAB (Delorme & Makeig, 2004), 
ERPLAB (Lopez-calderon & Luck,  2014), and Fieldtrip 
(Oostenveld et al., 2011) toolboxes. The digitized signals 
were filtered using a second-order digital Butterworth 
filter with a high pass at 0.10  Hz. Ocular artifacts (eye 
blinks and movements) were removed using independent 
component analysis (ICA) on continuous EEG. The EEG 
data were re-referenced to the average of two electrodes 
placed on mastoid bones. Because participants were free 
to choose either the high- or low-effort choice on every 
trial, the data of several subjects did not contain enough 
trials to analyze the RewP for each effort condition (see 
Supporting Information for the trial count information). 
For this reason, we examined the single-trial EEG data in-
stead of the averaged data (e.g., ERP) for all analyses.

Time-frequency analysis was performed using the 
Fieldtrip toolbox to compute FMT power during the de-
cision phase. To avoid potential time-frequency decom-
position edge artifacts, EEG data were segmented into 
long epochs of 9000 ms epoch extending from −2500 ms 
prior to 6500 ms time-locked to the onset of choice stim-
ulus (Figure  2, “Choice Evaluation”). We used complex 
Morlet wavelets to compute power values for frequencies 
between 1 and 40 Hz, with the width (or cycles) of each 
frequency band increasing from 3 to 12 cycles between 1 
and 40 Hz. Muscular and other artifacts were excluded 
according to the following criteria as implemented in 
EEGLAB (for detail see Delorme et al., 2007): (1) Linear 
trends with a maximum slope exceeding 150 μV, (2) Data 
improbability exceeding 5 standard deviations (SD) based 
on the joint probability for each epoch at each electrode, 
(3) Spectral pattern that deviated from baseline by ±50 dB 
in the 0–2 Hz frequency window for detecting eye move-
ments, and +25 dB and −100 dB in the 20–40 Hz frequency 
window for detecting muscle activity. FMT power was 
measured between 4 and 8 Hz at channel FCz, where it 
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generally reaches a maximum (e.g., Bernat et al., 2008; Foti 
et al., 2015; Umemoto, Inzlicht, & Holroyd, 2019). A time-
window of interest was determined based on the average 
across all of the conditions across all participants (i.e., a 
collapsed localizer approach; Luck & Gaspelin, 2017). To 
measure phasic bursts of FMT (i.e., phasic FMT) during 
the period of choice evaluation and selection, average 
FMT power was calculated within 300 ms surrounding 
the maximum activity according to the grand average in-
spection above. Based on this procedure, we identified a 
time window from 60 to 340 ms during which phasic FMT 
was evaluated (down-sampled to 50 Hz for subsequent 
analyses, which reduced the time window from 300 ms to 
280 ms). Data were baseline-corrected by subtracting from 
the average FMT power on each trial the mean FMT power 
during the −500 to −300 ms interval preceding choice 
onset. To measure ongoing FMT power (i.e., tonic FMT), 
average FMT power was calculated across the entire 4  s 
choice period without applying baseline correction.

For single-trial analysis of RewP amplitude, the data 
were segmented for an 800 ms epoch extending from 
200 ms prior to 600 ms following the onset of reward and 
no-reward feedback on each trial. Data were baseline cor-
rected by subtracting from each sample for each channel 
the mean voltage associated with that electrode during 
the 200 ms interval preceding feedback onset. The same 
artifact rejection procedure as for the time frequency anal-
ysis were applied, and data were low-pass filtered with 
30 Hz (with a slope of 12 dB). Single-trial RewP amplitude 
was determined by averaging the mean voltage from 240 
to 340 ms following feedback onset, measured at chan-
nel FCz, where it typically reaches maximum amplitude 
(Krigolson,  2018). To isolate the single-trial RewP from 
the P300, an ERP component that spatio-temporally over-
laps with the RewP, we also measured P300 amplitude on 
single trials (Holroyd & Krigolson, 2007). Single-trial P300 
amplitude was determined by averaging the voltages re-
corded at channel Pz from 440 to 540 ms following feed-
back onset, as determined based on the average across 
all of the conditions and all of the participants (Luck & 
Gaspelin, 2017).

2.5  |  Data analysis

Trials with RTs less than 200 ms were removed. We also 
removed trials with long RTs using a robust median abso-
lute deviation method (Leys et al., 2013; Lin et al., 2018). 
For each subject, this method first calculates a median 
RT, then identifies individual trials in which the RT was 
three or more median absolute deviations from the me-
dian RT. This resulted in removal of 7% of trials across all 
participants.

Classical frequentist statistical analyses were per-
formed in R (code: http://git.io/Jc9Iw). The design was 
entirely within-subjects; unless stated otherwise, all esti-
mates and statistics were obtained by fitting mixed-effects 
(multilevel or hierarchical) single-trial regression models 
(two levels: all factors and neurophysiological responses 
for each condition were nested within participants) with 
varying intercepts and slopes (unstructured covariance 
matrix) using the R package lme4 (Bates et al.,  2014). 
Varying or random effects were modeled as supported by 
the data. We also included trial number in each model to 
account for increasing mental fatigue associated with time 
on task.1 For models including FMT power, we tested the 
same model separately for phasic and tonic FMT. All con-
tinuous regressors were within-subject mean-centered (by 
subtracting the mean value for each participant from that 
participant's data) before being entered into a given model. 
Two-tailed probability values and degrees of freedom as-
sociated with each statistic was determined using the 
Satterthwaite approximation implemented in lmerTest 
(Kuznetsova et al., 2017).

2.5.1  |  Behavior

The baseline behavioral model
First, we fitted a generalized mixed effects model to exam-
ine whether participants' choices on each trial varied as a 
function of reward offered, reward probability, expected 
value (EV: probability × reward offered interaction), and 
trial number (i.e., time on task):

We predicted that higher values of reward offered, 
probability, and EV (which are all related to increasing 
reward value) would predict increased likelihood of high-
effort choices, whereas time on task (i.e., trial number) 
would predict decreased likelihood of high-effort choices 
(Treadway et al., 2009).

 1Although grip success (whether participants successfully executed a 
given choice; see Procedure) was significantly higher for the low-effort 
than the high-effort choice, it was not included in each model as a 
covariate in order for each model to converge. Importantly, there was 
no effect of grip success on any of the electrophysiological indices 
(ps >.37).

Choice made

=Reward offered+Probability+EV+Trial number

R syntax: glmer(Choice∼Reward offered+Probability

+Reward offered: Probability+Trial number

+ [1+Reward offered+Probability

+Reward offered: Probability+Trial number ‖ Subject]

Family= ‘‘Binomial’’).

http://git.io/Jc9Iw


8 of 16  |      UMEMOTO et al.

The behavioral model with FMT
We then explored whether FMT power and the interac-
tion between FMT power and EV would be associated 
with participants' choices. We extended the baseline be-
havioral model described above by including FMT power 
and FMT × EV interaction:

We examined whether increased FMT power and its 
interaction with EV was associated with more high-effort 
choices.

2.5.2  |  Electrophysiology:

The choice difficulty model of FMT
We tested whether FMT power varied as a function of 
choice difficulty (the choice difficulty account), which was 
captured by RT on each trial (during choice selection).2 
We also included reward offered, reward probability, EV, 
and trial number:

We examined whether increased RT was associated 
with increased FMT power. Further, based on our prior 
work (Umemoto, Inzlicht, & Holroyd, 2019), we predicted 
that tonic FMT would increase with time on task.

The effort selection model of FMT
We tested whether FMT power varied as a function of 
choice (high-effort vs. low-effort choice) (the effort selec-
tion account) by including participants' choice in lieu of 
RT. As with the Choice Difficulty Model of FMT above, 
we also included reward offered, reward probability, EV, 
and trial number:

FMT=Reward offered+Probability+EV

+Trial number+Choice selected.

We examined whether selecting the high-effort choice 
was associated with increased FMT power. Similar to 
above, we predicted that tonic FMT would increase with 
time on task.

The RewP model
Finally, we tested whether effort choice influenced single-
trial RewP amplitude. Reward outcome was entered as a 
binary variable (−0.5 = no-reward, 0.5 = reward), rather 
than as a continuous variable (see Supporting Information 
for an additional analysis), based on evidence that RewP 
encodes feedback outcomes in a binary manner (Hajcak 
et al., 2006). To control for the confounding effect of an 
overlapping ERP component (Krigolson,  2018), this 
model also included single-trial P300 amplitude. That is, 
we examined whether RewP varied as a function of choice 
(high-effort vs. low-effort choice), probability, binary re-
ward outcome, probability × binary reward outcome, P300 
amplitude, and trial number:

First, we examined whether selecting high-effort choices 
was associated with enhanced single-trial RewP amplitude. 
Second, we predicted that single-trial RewP amplitude 

Choice made=Reward offered+Probability+EV

+Trial number+FMT+FMT×EV.

R syntax: glmer(Choice∼Reward offered+Probability

+Reward offered: Probability+Trial number+FMT

+Reward offered: Probability: FMT

+ (1+Reward offered+Probability

+Reward offered: Probability+Trial number+FMT

+Reward offered: Probability: FMT ‖ Subject)

Family= ‘‘Binomial’’).

 2As an alternative approach to the RT measure, we also explored the 
Choice Difficulty Model by estimating subjective values (SV) of choice 
difficulty based on each subject's indifference point. To do this, we first 
calculated the difference in EV between the easy and the hard choice 
(EV-hard minus EV-easy) on each trial. We then used this EV 
difference to predict choice using logistic regression, and get an 
indifference point for each subject. To get a trial-by-trial estimate of SV 
of choice difficulty, we subtracted the indifferent point from the EV 
difference on each trial for each subject, and fit the model using this 
value in lieu of RT. Similar to the results with RT, there was no 
significant effect of SV on phasic FMT (t(3832) = −.43, p = .66), and the 
model with tonic FMT failed to run due to a failure to converge.

FMT = Reward offered + Probability + EV + Trial number + RT.

R syntax: lmer(FMT∼Reward offered+Probability

+Reward offered: Probability+Trial number+RT

+ (1+Reward offered+Probability

+Reward offered: Probability+Trial number+RT ‖ Subject)).

R syntax: lmer(FMT∼Reward offered+Probability

+Reward offered: Probability+Trial number+Choice

+ (1+Reward offered+Probability+Reward offered

: Probability+Trial number+Choice ‖ Subject)).

Single− trial RewP=Choice selected+Probability

+Binary−reward outcome+Probability×Binary

−reward outcome+Single− trial P300+Trial number.

R syntax: lmer(RewP∼Choice+Probability+Binary

−reward outcome+Probability: BINARY−reward outcome

+P300+Trial number+ (1+Choice+Probability

+Binary−reward outcome+Probability: Binary

−reward outcome+P300+Trial number ‖ Subject)).
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would be larger (i.e., more positive) following reward out-
comes compared to no-reward outcomes, and following 
unexpected (i.e., low probability) outcomes compared to 
expected (high probability) outcomes. Third, we predicted a 
probability × binary-reward outcome (no-reward vs. reward) 
interaction such that single-trial RewP amplitude would be 
more positive following unexpected reward outcomes, and 
more negative following unexpected no-reward outcomes. 
Lastly, in keeping with previous observations, we predicted 
that single-trial RewP amplitudes would decrease with time 
on task (Umemoto, Inzlicht, & Holroyd, 2019).

2.6  |  Data exclusion

One participant discontinued the experiment. The data 
of another participant were excluded due to a low rate of 
successfully executing the high-effort choice, which was 
3 standard deviations (SD) below the mean across all par-
ticipants. The data of a third participant were excluded 
due to a technical problem. Finally, data sets in which 
more than 30% of the trials were contaminated by motor 
artifacts were excluded (n = 10), resulting in a total of 64 
participants' data analyzed.

F I G U R E  3   Probability of the high-effort choice selected (y-axis) as a function of (a) reward offered from 3 to 8 cents (x-axis) and (b) 
block of trials (block 1 to 8, each containing 39 trials) for each reward probability of 20% (purple line), 50% (turquoise line), and 80% (light 
green line). The proportion of the high-effort choice was calculated as the number of high-effort choice selected divided by the sum of all the 
trials. Error bars indicate within-subject 95% confidence intervals.

F I G U R E  4   Phasic-FMT × EV (expected value: reward offered × probability) interaction on the probability of the high-effort choice 
selected. Each panel shows a relation between phasic-FMT power (x-axis) and the proportion of high-effort choice selected (y-axis) 
according to reward offered (±1 standard deviation (SD) from the mean of 5.5 cents) for 20% reward probability (left panel), 50% reward 
probability (middle panel), and 80% reward probability (right panel).
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3   |   RESULTS

3.1  |  Behavior

On average, participants nearly always produced the re-
quired effort for the selected choice (M = 97%, SD = 5%), 
with the success rate significantly higher for the low-effort 
choice (M = 99%, SD = 3%) than for the high-effort choice 
(M = 95%, SD = 8%), b = 3.60, SE = 0.66, z = −5.45, p < .01.

3.1.1  |  The baseline behavioral model

The results from a generalized mixed model indicated 
that participants' choices varied as a function reward of-
fered (b = 11.09, SE = 0.97, z = 11.42, p < .01), probability 
(b = 10.05, SE = 0.81, z = 12.37, p < .01), EV (b = 17.68, 
SE = 2.93, z = 6.03, p < .01), and trial number (b = −4.83, 
SE = 1.27, z = −3.80, p < .01). That is, participants were 
more likely to select the high-effort choice when reward 
offered and reward probability were higher (Figure  3a), 
and selected the high-effort choice less with time on task 
(Figure 3b), presumably due to increasing fatigue.

3.1.2  |  The behavioral model with FMT

This model extended the baseline behavioral model by 
including FMT power and the interaction between FMT 
and EV. As with the baseline model, the effects of reward 
offered, probability, EV, and trial number were significant 
(ps <.01). Additionally, although the effects of phasic-
FMT (p = .65) or tonic-FMT (p = .19) were not statistically 
significant, there was a significant phasic-FMT × EV inter-
action (b = 24.09, SE = 11.80, z = −2.04, p = .04) on par-
ticipants' choice. This interaction suggests that increased 
phasic FMT was associated with selecting the high-effort 
choice mainly on difficult decision trials (i.e., low prob-
ability and high reward offered, high probability and low 
reward offered) (Figure  4). For these difficult choices, 

more FMT was associated with higher likelihood of select-
ing the effortful action.

3.2  |  Electrophysiology

3.2.1  |  The choice difficulty model of FMT

Phasic FMT: Phasic FMT power did not significantly 
vary as a function of RT (b < 0.01, SE < 0.01, t(50) = 0.01, 
p = .99) or any other variables (ps >.07).

Tonic FMT: We found that tonic FMT varied as a func-
tion of trial number (b  =  0.06, SE  =  0.01, t(62)  =  5.52, 
p < .01), such that tonic FMT increased with time on task 
(Figure 5a). There was a (non-significant) trend for the ef-
fect of RT (b < 0.01, SE < 0.01, t(55) = 1.99, p = .051).

3.2.2  |  The effort selection model of FMT

Phasic FMT: Phasic FMT did not vary as a function of 
choice (p = .53), or other variables (ps >.06).

Tonic FMT: We found a significant effect of trial 
number (b = 0.05, SE = 0.01, t(63) = 4.80, p < .01), such 
that tonic FMT increased with time on task (Figure 5a). 
There was no effect of choice (p = .64), or other variables 
(ps >.15).

3.2.3  |  The RewP model

Single-trial RewP amplitude was significantly modu-
lated by choice (b = 0.01, SE < 0.01, t(61) = 3.31, p < .01), 
such that selecting the high-effort choice and executing 
it was associated with increased RewP amplitude. There 
was also a significant effect of P300 (b = 0.45, SE = 0.02, 
t(62) = 27.12, p < .01), such that a larger single-trial RewP 
amplitude was associated with a larger single-trial P300 
amplitude. There was also a significant effect of trial num-
ber (b = −0.05, SE = 0.01, t(63) = −4.38, p < .01), such that 

F I G U R E  5   Effect of time on task (block) on (a) Tonic FMT power and (b) single-trial RewP. Error bars indicate within-subject 95% 
confidence intervals.
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single-trial RewP amplitude decreased with time on task 
(Figure 5b). Finally, there was a significant interaction of 
reward probability and binary reward outcome on single-
trial RewP amplitude (b = 0.02, SE = 0.01, t(17149) = 2.53, 
p = .01). That is, unexpected reward and no-reward were 
both more negative than expected reward and no-reward 
(Figure S3 in Supporting Information).

4   |   DISCUSSION

Execution of goal-directed behavior depends on weigh-
ing expected rewards against the effort-related costs 
in acquiring the rewards. Although ACC has been 
suggested to play a key role in this process (Bonnelle 
et al.,  2016; Chong et al.,  2017; Croxson et al.,  2009; 
Kurniawan et al., 2010; Skvortsova et al., 2014; Vassena 
et al., 2014), its exact role remains unclear. Here we ex-
amined electrophysiological signals related to the con-
trol and reward processing functions of ACC in order 
to investigate the contribution of ACC to carrying out 
physically effortful behavior. Toward this end, we meas-
ured single-trial FMT power and RewP amplitude from 
participants engaged in a modified Effort-Expenditure 
for Rewards Task (Treadway et al.,  2009). Replicating 
previous observations, we found that participants were 
more likely to select the high-effort choice when reward 
offered and reward probability were higher, whereas 
they selected the high-effort choice less with time on 
task (Treadway et al., 2009).

Of central interest, we tested whether either phasic or 
tonic FMT were related to choice difficulty (using RT as a 
proxy) or to effort selection (using choice as a proxy). In 
fact, we did not find support for either hypothesis. Phasic 
FMT was not associated with RT, with selecting high-effort 
actions, nor with any other task variables. Tonic FMT, 
which is associated with sustained mental effort (Holroyd 
& Umemoto,  2016), did show a trend (p =  .051) for the 
effect of RT, suggesting that tonic FMT increased on trials 
when participants took longer to decide. However, given 
that this result is not statistically significant, it should be 
evaluated with caution.

Despite these findings, an exploratory analysis revealed 
a significant interaction of phasic FMT and EV on par-
ticipants' choices, indicating an interplay between choice 
difficulty and effort selection (Figure 4). Visual inspection 
of this interaction reveals that, unsurprisingly, the prob-
ability of selecting the high-effort choice increased with 
reward probability (left, middle, and right panels), and 
increased with reward offered (dotted, dashed, and solid 
lines). Further, these choices were independent of phasic 
FMT for nearly all conditions (horizontal lines), except 
large rewards on low probability trials (solid line, left 

panel) and small rewards on high probability trials (dot-
ted line, right panel). In these cases, increased phasic FMT 
was associated with greater probability of selecting the 
high-effort choice. This interaction suggests that phasic 
FMT most influenced behavioral choices on difficult de-
cision trials (i.e., low probability and high reward offered, 
high probability and low reward offered), with increased 
phasic FMT associated with a greater probability of select-
ing the high-effort choices. Notably, these results obtained 
despite phasic FMT being unrelated to decision difficulty 
(as indexed by RT) and effort selection.

Evidently, phasic FMT reflects an interaction between 
both processes: increased FMT is associated with select-
ing the effortful action only when the decision is difficult. 
For easy decisions, FMT is incidental to the action selec-
tion process. Thus, the amount of phasic FMT appears to 
matter most under conditions that demand increased con-
trol. When the effort-reward tradeoff is balanced between 
choices, increased control by ACC seems to tip the balance 
in favor of the high-effort choice. In this way, phasic FMT 
appears to regulate control specifically under situations of 
decision conflict, biasing the choice in favor of the high-
effort/high-reward option.

Although phasic FMT has been well-studied in tasks 
requiring cognitive control (e.g., Cavanagh & Frank, 2014; 
Holroyd & Umemoto, 2016), its role in decision making 
(Lin et al.,  2018; Pinner & Cavanagh,  2017) and effort 
(Umemoto, Lin, & Inzlicht, 2019) are under-studied. Lin 
et al. (2018) examined phasic FMT during an intertempo-
ral choice task; they found that phasic FMT tracks subjec-
tive conflict in decision making, being largest when two 
options were similar in value, and, unexpectedly, when 
choice was easiest to make and attention-capturing (e.g., 
“$15 today or $15 in 30 days”). They interpreted these re-
sults as indicating that phasic FMT may reflect adaptive 
control during value-based choice. Further, Pinner and 
Cavanagh  (2017) found that, although there was no ef-
fect of response conflict on risky decision making overall, 
individual differences in phasic FMT predicted this asso-
ciation. That is, individuals with increased phasic FMT 
showed reduced risky decision making under situations 
of increased response conflict, compared to individuals 
with decreased phasic FMT. Our present study adds to 
these findings by suggesting that phasic FMT adaptively 
biases decision making in order to motivate high-effort/
high-reward behavior in the face of decision conflict.

Consistent with prior studies, tonic FMT increased 
with time on task, suggesting increased control ap-
plication with increasing fatigue (Umemoto, Inzlicht, 
& Holroyd,  2019; Wascher et al.,  2014; but see Arnau 
et al.,  2021). Although prior studies examined tonic 
FMT as a sustained activity throughout a cognitively-
fatiguing task (Umemoto, Inzlicht, & Holroyd,  2019;  
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Wascher et al., 2014, see also Tran et al., 2020), the present 
study restricted the measurement window to the decision 
period because of potential contamination of the EEG 
by motor-related artifacts. Nevertheless, we replicated 
the time-on-task effect of tonic FMT observed previously 
(Tran et al., 2020 for a review). Tonic FMT could also vary 
during other cognitive processing stages. For example, 
one study reported increased sustained FMT in anticipa-
tion of the deployment of cognitive effort, suggesting a 
preparatory control process (De Loof et al., 2019). Tonic 
FMT may also be enhanced during the actual production 
of effort (the Effort Production stage; Figure 1), given that 
ACC activity increases when physical effort is expended. 
Therefore, further investigations should assess tonic FMT 
during actual effort production (e.g., Umemoto, Lin, 
& Inzlicht,  2019) and other processing stages in effort-
related decision-making tasks.

Replicating our previous finding, RewP amplitude 
decreased with time on task, suggesting that subjective 
reward value decreased over time (Umemoto, Inzlicht, 
& Holroyd,  2019). We examined whether effort-related 
process interacted with reward outcome valuation. This 
revealed a significant effect of effort choice on RewP am-
plitude, suggesting that selecting and instigating high-
effort actions may have increased the subjective value of 
the reward received (Festinger, 1957; Norton et al., 2012). 
Importantly, this effect remained significant when con-
trolling for the magnitude of the reward outcomes 
(Supporting Information), so that larger RewPs are asso-
ciated with greater effort in obtaining the rewards rather 
than with the size of the rewards once obtained. Further, 
although the RewP was distributed over more posterior 
areas of the scalp (see Supporting Information), suggest-
ing a possible confound with the overlapping P300 com-
ponent, the effect of effort choice remained statistically 
significant even when controlling for P300 amplitude.

The finding that high-effort choice was associated with 
increased RewP amplitude is in line with prior studies ex-
amining the effect of cognitive effort on RewP (Harmon-
Jones, Clarke, et al.,  2020; Harmon-Jones, Willoughby, 
et al., 2020; Ma et al., 2014). A few possible mechanisms 
could be driving this effect. First, ACC activity is often 
associated with physical rather than cognitive demands 
of goal-directed performance (e.g., Caruana et al.,  2018; 
Le Heron et al., 2019; Parvizi et al., 2013). Therefore, in-
creased engagement of ACC during high-effort choices 
could result in a concomitant increase in ACC engagement 
when the reward outcomes of those choices are processed. 
Second, high-effort behavior is less predictive of success-
ful performance. Consider which activity you would be 
more likely to complete: 5 push-ups or 500 push-ups? On 
this account, rewards for high-effort behaviors are less ex-
pected than rewards for low-effort behaviors, leading to 

a larger RewP when reward for the former is in fact re-
ceived. Nevertheless, this finding is tentative given the 
possible overlap of the RewP with the P300 (see below).

Finally, there was a significant interaction of reward 
probability and reward outcome (no-reward vs. reward) 
on RewP amplitude. At face value, this interaction ap-
pears consistent with the standard finding that RewP 
amplitude reflects reward prediction error signals (i.e., 
unexpected reward and no-reward feedback yield a larger 
difference in the ERPs compared to expected reward and 
no-reward feedback) (e.g., Holroyd et al.,  2003; Holroyd 
& Krigolson, 2007; Sambrook & Goslin, 2015). However, 
a close inspection revealed that the values for unexpected 
reward and no-reward were both more negative than for 
expected reward and no-reward (Figure S3 in Supporting 
Information), which is inconsistent with that hypothesis. 
This discrepancy could be due to a few factors. First, RewP 
amplitude is not normally assessed using the single-trial 
regression approach, and although this analysis controlled 
for the influence of overlapping P300 component, the 
scalp topography of RewP was more posteriorly distrib-
uted than what is commonly observed, suggesting a possi-
ble confounding effect of the P300 on the RewP (Figure S2 
in Supporting Information). Second, some studies have 
suggested that RewP amplitude is attenuated in more 
complex tasks. For example, when instructional informa-
tion intervenes between response and reward feedback, 
informing subjects of what action to execute on the follow-
ing trial, the RewP is disrupted (Baker & Holroyd, 2011). 
In the current study, participants were required to quickly 
integrate multiple types of information to decide what 
action to take on each trial (e.g., reward, probability, and 
required effort, in the presence of accumulating phys-
ical and mental fatigue). Note that we have successfully 
produced a standard RewP in our past studies using ab-
stract feedback images (e.g., Baker et al.,  2016; Baker & 
Holroyd,  2009; Heydari & Holroyd,  2016; Umemoto & 
Holroyd,  2017; Umemoto, Inzlicht, & Holroyd,  2019). 
Further, successful high-effort actions did not guarantee 
a reward, which was determined at random afterwards. 
Although the reward probability in interaction with small 
rewards (up to 8 cents) may have also affected the pat-
tern of RewP, we have observed a standard RewP using 
similar task designs (Umemoto et al., 2017; Umemoto & 
Holroyd, 2017). Therefore, a combination of these factors 
may have contributed to our finding.

Taken together, several observations in the present 
study suggest a specific role for ACC in regulating effort-
ful control for adaptive behavior. First, ACC appears to 
support task behavior for extended periods: During ap-
proximately 1 hour of a physically effortful task, partic-
ipants appeared to apply greater effort (increased tonic 
FMT) with time while the rewards became increasingly 
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less rewarding (reduced RewP amplitude). Second, al-
though our predictions about FMT's association with 
either choice difficulty or effort selection were not sup-
ported, an exploratory analysis revealed a more nuanced 
role of phasic FMT related to the interaction of the two 
processes. In particular, increased phasic FMT appeared 
to facilitate selection of the effortful behavior mainly 
when the decision between the high-effort and low-effort 
choices was especially difficult. Therefore, ACC's control 
levels seem to matter only for overcoming difficult deci-
sions to motivate high-effort behavior. By contrast, under 
situations with little conflict (e.g., high reward and high 
probability, low reward and low probability), ACC's con-
trol levels are incidental to the action selection process. 
This is presumably because the signal is redundant with 
the output of other neural systems directly responsible 
for action selection, as suggested by computational sim-
ulations (Holroyd & McClure,  2015). Third, selection 
of the high-effort action was associated with increased 
RewP amplitude following the reward outcome. Possibly, 
increased engagement by ACC facilitating effort expen-
diture leads to increased processing by ACC of the subse-
quent reward. Alternatively, we speculate that the larger 
RewP reflects learning by the ACC of the reward value of 
effort investment, which could be used for future valua-
tion of effort-related choices (Holroyd & McClure, 2015; 
Huw et al.,  2021; Shenhav et al.,  2013). These findings 
support a role for ACC not in evaluating conflict or moti-
vating effortful behavior per se, but rather in overcoming 
conflict to motivate effortful behavior, precisely when 
conflict is highest (Holroyd & McClure,  2015; Kolling 
et al.,  2016; Porter et al.,  2019). In this way ACC may 
be uniquely positioned to motivate and persist at espe-
cially challenging goal-directed behaviors (Holroyd & 
Verguts, 2021).
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